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Abstract

Two opposing hypotheses have been proposed to explain the relationship between educa-
tion and health across age: cumulative advantage and age-as-leveler. Empirical studies
generally found a pattern consistent with the latter perspective, showing a diminishing
effect of education on health at older ages. Some researchers suggested that the observed
converging lifecourse patterns are an artifact of selective mortality in the population where
the true effect is cumulative. The goal of this paper is to show that the observed declining
or curvilinear lifecourse pattern between education and mortality could be caused entirely
by mortality selection due to unobserved heterogeneity in population frailty. We use sim-
ple macrosimulation models to show that in a population characterized by heterogeneity
in mortality hazard, a true linearly increasing effect of education on mortality may appear
to have the lifecourse pattern observed in many empirical studies.



Socioeconomic status has been shown consistently to be a strong predictor of health

and mortality. Understanding the pattern of education-health relationship across the

life course is a crucial step in disentangling the pathways that mediate their association.

The pathways ultimately operate on the individual psychosocial and biological level, thus

we also need to understand the individual-level lifecourse trajectory of the association

between education and health (O’Rand 2001). Empirical studies necessarily measure life-

course patterns at the population level and researchers then make inferences about the

individual-level trajectories from the observed population data. These inferences, how-

ever, may not straightforward and may potentially lead to erroneous conclusions (Vaupel

and Carey 1993).

This paper focuses on exploring the difficulties with inferring individual lifecourse

trajectory of education’s effect on mortality from population-level data. In particular, I

explore the effects of unobserved heterogeneity as a potential cause of bias. Vaupel et

al. (1979; 1985a; 1985b) showed how heterogeneous frailty in a cohort biases the shape

of the observed mortality hazard. I extend their work to explore the potential bias on

estimates of mortality’s determinants, such as education, across the lifecourse. Research

on determinants of health lacks literature on the effects of unobserved heterogeneity and

as a result researchers may make simplifying and potentially misleading inferences about

their effect across age (Vaupel, Manton and Stallard 1979; Vaupel and Yashin 1985b).

Lifecourse pattern of SES-health relationship: Theory

There are two major theoretical perspectives in social epidemiology that purport to ex-

plain individual lifecourse pattern of the effect of socioecoonmic status on health and

mortality. The pattern is a property of a cohort, not of individuals (Dannefer 2003).

However, undestanding these cohort patterns will inform individual pathways from SES

to health.

The first perspective suggests that the effect of education on health and mortality

diminishes in old age. This hypothesis is variously called ’age as leveler’ or ’convergence’

perspective. According to this theory, the declining effect of education on health and

mortality in old age is due to a combination of several factors. Government aid to the

elderly in the form of social security and Medicare is thought to balance out some of the

socioeconomic inequalities that grew throughout adulthood. Furthermore, health may
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become more strongly dependent on age in later years due to a universal biological frailty

in late life (House et al. 1994; Markides and Black 1996), making the relative importance

of SES predictors smaller.

The second perspective is the cumulative advantage theory, which suggests that the

opposite individual-level lifecourse pattern occurs: the effect of socioeconomic status on

health and mortality increases with age; that is, health differentials diverge across the life-

course (Lauderdale 2001; Lynch 2003). According to this perspective, inequality within

cohorts increases with age (O’Rand 2001) in a process by which early early socioeconomic

disadvantages and advantages cumulate gradually to produce an increasingly heteroge-

neous cohort (Dannefer 1987). Double jeopardy hypothesis is another closely related

concept in health lifecourse research, which says that there is divergence in health trajec-

tories between whites and minorities (Ferraro and Farmer 1996a; 1996b).

Crystal and Shea (1990), and Easterlin et al. (1993) found cumulative advantage

process in economic inequality—the effects of social security and other government sup-

port to the elderly were outpaced by private income and wealth accumulation. Moreover,

many health risks and behaviors, such as smoking or obesity, also accumulate over time

and can take decades to affect health (Ferraro and Kelley-Moore 2003). Stress as another

factor affecting health that has often been conceptualized as having a cumulative effect

on health (Lynch and George 2002; McEwen 1998).

The cumulative advantage perspective finds support in diverse social science disci-

plines and there is relative consensus that cohorts evidence increasing heterogeneity and

inequality with age (O’Rand 1996). The divergence concept has been employed in life-

course study of subjects ranging widely from widening differences in children’s abilities

(Scarborough and Parker 2003) to wage inequalities (Bernhardt et al. 2001), to the well-

known Matthew effect describing the diverging trajectories of academic careers (Merton

and Zuckerman 1968).

Empirical findings of lifecourse patterns of education-mortality relationship

While the cumulative advantage perspective is theoretically well-founded and resonates

in many disciplines, empirical research of the SES-health association across lifecourse has

not been consistent (Ferraro and Kelley-Moore 2003).

Kitagawa and Hauser’s (1973) seminal work on socioeconomic differentials in mortality
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in the US established the use of education as a strong predictor of mortality. The authors

analyzed mortality ratios by educational level among adults 25-64 and 65+, and found

that mortality differences by educational level were considerably smaller for the older

group. More recently, in the 1990s, several studies based on data from the National Lon-

gitudinal Mortality Study, a large nationally representative survey of the US population,

also disaggregated the population by age, and all observed a weaker effect of education on

mortality among persons 65+ compared to the working-age group (Backlund, Sorlie and

Johnson 1996; Elo and Preston 1996; Preston and Elo 1995; Rogot, Sorlie and Johnson

1992; Sorlie, Backlund and Keller 1995). Somewhat surprisingly, no explanations for the

diminishing effect of education were offered in any of these papers, or even of reasoning

behind dividing the study population into several age groups.

Additional research on educational differences in mortality, employing data from the

US and Europe, also found the same general result of converging educational differentials

in health and mortality among the oldest (Christenson and Johnson 1995; Feldman et

al. 1989; Kunst and Mackenbach 1994; Mustard et al. 1997). Adler et al. (1993)

reviewed further studies and noted that ”socioeconomic status differences in health are

greatest in middle age and early old age compared with both earlier and later in life”

(p. 3141), thus lending support to the convergence hypothesis, albeit also without any

further explanations about the causes of this pattern.

The papers reviewed above did not specifically focus on the lifecourse pattern of the

education-health relationship. House and colleagues (1990; 1994) were interested explic-

itly in the age pattern of the SES-health relationship. In both papers they observed an

inverse-U shape pattern of the education-health relationship, with diverging health in-

equalities in the early adulthood and convergence after early old age. They concluded

that the pattern represents a true trajectory although they also suggested that selective

mortality may contribute to the observed pattern.

In contrast to the large body of papers that found support for the convergence per-

spective, relatively little support can be found for the cumulative advantage perspective.

Ross and Wu (1996) studied how educational attainment effected changes in health in a

course of one year. They found that the less-educated evidenced steeper declines than

individuals with higher educational attainment, thus lending support to the cumulative

advantage hypothesis. The authors did not attempt to reconcile their findings with the
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existing body of findings pointing in the opposite direction, and they did not suggest any

theoretical explanation for the observed divergence.

Recently, there have been some effort in demography to explore lifecourse process in

the education-mortality association. Beckett (2000) attempted to adjust for selective mor-

tality in an analysis of education’s effect on health, in the lifecourse of a synthetic cohort.

She found converging educational inequalities in health in the old age and concluded that

selective mortality does not account for the convergence. However, Lynch (2003) later re-

analyzed the same data using hierarchical models and found that selective mortality fully

explains the observed convergence in mortality by education in the old age. His analysis

determined that, at the individual level, the effect of education on health is cumulative

across the lifecourse. A similar conclusion was also reached by Lauderdale (2001) who

used an indirect estimation approach with Census data and also found that the effect of

education on mortality increases steadily with age.

Research question

Vaupel and Yashin (1985b) suggested that heterogeneity should be considered an expla-

nation when theory and auxiliary individual-level evidence conflict with observed (cohort)

lifecourse trajectories. It is, I argue, the case here: the cumulative advantage theory is

well-founded, but bulk of the empirical evidence supports the convergence perspective.

My contention is that the weakening effect of education on mortality found in most

empirical research may be an artifact of mortality selection due to unobserved heterogene-

ity. The age trajectory of education’s effect on mortality in a population is often simply

assumed to reflect individual lifecourse change. However, the cohort pattern could also

be an artifact of selective mortality that induces systematic changes in the composition

of the cohort and thus biases empirical findings.

In observational studies, inferences about individual patterns are made from cohort or

population-level data. In this simulation paper, I reverse the inference process and study

the micro- to macro-level relationship. I will use macrosimulation to show how the cohort

lifecourse trajectory of education-mortality relationship can be affected by heterogeneous

frailty in the population. Wachter exhorted demographers to make heterogeneity a priority

in research (1997). In this paper, I will focus on the ability of unobserved heterogeneity to

produce artifactual cohort trajectories, and show that making straightforward inferences
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about individual-level lifecourse patterns from population data may be problematic.
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Method

The mathematics of heterogeneous frailty and its effect on cohort mortality

hazard trajectory

In this section, I will present the basic concepts necessary to study the effects of unobserved

heterogeneity in frailty on the shape cohort mortality trajectory. The mathematics were

developed by Vaupel and colleagues (Vaupel, Manton and Stallard 1979; Vaupel and

Yashin 1985a; Vaupel and Yashin 1985b). I will briefly summarize their work, focusing

on results relevant for the present research question. For detailed discussion, proofs and

examples, see Vaupel, Manton and Stallard (1979), and Vaupel and Yashin (1985a; 1985b).

I will employ the tools introduced in this section to consider what happens to predictors of

mortality, such as education, during the lifecourse of a cohort in the presence of unobserved

heterogeneity.

Consider a cohort of individuals that are followed from early adulthood. The mortality

experience of each individual is captured by the instantaneous probability of dying at age

x, µ(x). Of course, all individuals at a given level of mortality hazard do not have identical

lifespans. Age at death thus is a random variable with a probability function described

by µ(x).

Three interrelated functions need to be introduced. The instantaneous probability of

dying µ(x) is defined as negative logarithmic derivative of the survival curve,

µ(x) = −dlogS(x)

dx
. (1)

Cumulative mortality hazard from birth to age x, denoted H(x) is

H(x) =

∫ x

t=0

µ(t)dt. (2)

Finally, S(x) represents the likelihood of surviving to age x. Is is a strictly declining

function, reflecting the gradual dying out of the cohort, calculated by definition (see 1

above) as:

S(x) = e−
∫ x

t=0 µ(t)dte−H(x) (3)

In these three defining equations, age is the only predictor of mortality—all individuals

of the same age are implicitly assumed to have the same mortality hazard µ(x). However,
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a wide range of observed and unobserved factors effect mortality hazard. Demographers

often use the term frailty to represent the unobserved portion of the variation among

individuals of a given age in their likelihood of dying.

Frailty, denoted Z, is a random variable usually defined as a combination of unobserved

genetic and nongenetic factors that make an individual’s mortality rate µ(x) systemati-

cally different from some other individual’s mortality rate (Manton, Stallard and Vaupel

1981). It means simply that individuals at a given age (and a given set of measured

predictors) vary in their probability of dying (Vaupel and Yashin 1985a). It is assumed in

this paper that the level of frailty Z is constant within individuals across the lifecourse;

that is, an individual at any given frailty level at birth remains at that level throughout

life. Most research on heterogeneity makes this simplifying assumption, mainly because

of mathematical convenience. For an example of an analysis that includes a within-

individual time-varying frailty, see Manton (1999). Since age is a random variable, there

is still a wide variance in life expectancies for individuals at a given frailty level (Vaupel

1988).

Operationally, the level of frailty for an individual is defined as a proportional change

of mortality hazard for an individual, compared to some other individuals’ mortality

hazard. Let me define an individual with frailty Z = 1 as a standard individual whose

frailty is denoted µ(x, 1)1. By this definition, an individual with frailty level Z = z will

have mortality hazard

µ(x, z) = zµ(x) (4)

Cumulative hazard H(x, z) for an individual with frailty level z is computed, from (2)

and (4), as

H(x, z) =

∫ x

t=0

µ(t, z)dt =

∫ x

t=0

zµ(t)dt = z

∫ x

t=0

µ(t)dt = zH(x) (5)

The effect of frailty Z is thus multiplicative both on mortality hazard µ(x) and cu-

mulative mortality hazard H(x). Finally, the survival curve for an individual with frailty

level Z = z is calculated simply as

1For simplicity I will in the remainder of the paper drop the specification Z = 1 for the standard

individual. Thus µ(x, 1) will be simplified to µ(x), S(x, 1) to S(x) etc.
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S(x, z) = e−H(x,z) = e−zH(x) = S(x)z. (6)

For example, if a standard individual has 30% probability of surviving to age x, the

likelihood of surviving to that age for an individual at frailty level, say Z = 2, will be

0.32, or 9%.

Equations (1) to (6) above described individual mortality trajectories. However, these

are unobservable—for any individual, only age at death is an observable variable, while the

entire µ(x) trajectory is latent. We use information about the ages at death for individuals

to get the average mortality rate for a cohort, denoted µ̄(x), cohort cumulative hazard

H̄(x), and cohort survival probability S̄(x)2.

Let me first calculate average mortality µ̄(x) in a cohort composed of two homogeneous

frailty groups. Consider a cohort where one group of individuals has frailty Z = 1, and

another group Z = z. The mortality experience of individuals in group 1 is described

by equations (1) to (3), and in group z by equations (4) to (6). Also suppose that at

age x = 0, both of these groups comprise a fraction of the cohort: Π1(0) = 1 − Πz(0).

At age x, the proportion of individuals in each group Π(x), will decline proportionally to

the survival probability S(x) associated with the respective group: Πi(x) = Πi(0)Si(x),

i = 1, z. Because the higher-frailty individuals are removed from the cohort at a faster rate

than their lower-frailty counterparts, the fraction of the total surviving cohort comprising

the high-frailty group will decline steadily. The cohort mortality hazard always increases

more slowly that the individual hazards. Accounting for the changing composition of the

cohort, the average mortality rate µ̄(x) is calculated as

µ̄(x) =

∑
i µ(x, i)Π(x, i)∑

i Π(x, i)
, i = 1, z. (7)

As the higher-frailty group gradually comprises ever smaller fraction of the cohort, the

average hazard approaches the mortality rate for the lower-frailty group (Keyfitz 1985).

Thus the surviving cohort is not a random sample from the cohort at birth but is system-

atically more robust (Manton, Stallard and Vaupel 1981; Vaupel, Manton and Stallard

1979). Figure 1 below shows two examples of the effect of unmeasured heterogeneity on

2See Vaupel, Manton and Stallard (1979), p.453 for proof that the average mortality for the surviving

individuals equals the cohort mortality hazard.
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the observed mortality hazard trajectory µ̄(x) relative to the unobserved individual tra-

jectories, in a cohort with two homogeneous frailty groups and different baseline hazards.

The example above represented a cohort with a discrete (Bernoulli) distribution of

frailty Z. A more realistic distribution of frailty in a cohort is a continuous distribution

of frailty Z ∼ f(z). Then Π(x, z) in (7) becomes fx(z) and

µ̄(x) =

∫
z
µx(z)fx(z)dz∫

z
fx(z)dz

.

By (4), µx(z) in the numerator equals zµ(x), and from definition of probability density

functions, the denominator
∫

z
fx(z)dz = 1. Hence,

µ̄(x) =

∫

z

zµ(x)fx(z)dz = µ(x)

∫

z

zfx(z)dz = µ(x)z̄(x), (8)

where z̄(x) is the average frailty for the cohort at age x. Equation (8) represents the

fundamental theorem of heterogeneity, which links individual mortality hazards µ(x, z)

and cohort mortality hazard µ̄(x) through the distribution of frailty f(Z). It states that

the average mortality hazard is proportional to the average frailty in the cohort. As the

individuals at higher frailty level—and thus higher mortality hazard— are removed from

the cohort, the average frailty level in the cohort z̄(x) declines, and the average mortality

hazard µ̄(x) then declines relative to the standard-individual hazard µ(x).

Gamma distribution for frailty at birth has been shown to be a particularly analytically

tractable distribution for frailty in the study of mortality selection. A random variable Z

is gamma distributed if its probability density function is

f(Z|λ, k) =
λk

Γ(k)
zk−1e−λz, for z > 0,

with mean and variance

E(Z) =
k

λ
, and V ar(Z) =

k

λ2
. (9)

Gamma distribution can take different shapes, which depend on the parameter k,

called the shape parameter. Gamma distribution with k = 1 is the exponential function

with parameter λ. Figure 2 shows the probability density functions for k = 2, 4 and 8.

When k = 2, the distribution is positively skewed, describing a cohort where bulk of

individuals have similar levels of frailty, with a small number having much higher frailty
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levels. As parameter k increases, the distribution becomes similar to the normal, and as

k →∞, variance of the distribution approaches zero—cohort is frailty-homogeneous.

Following Vaupel and Yashin (1985a), I will assume that the mean frailty at birth

z̄(0) = 1. From (9) this assumptions constrains the parameters λ and k to be equal,

λ = k, and V ar(Z(0)) = 1/k. It can be shown3 that when frailty at birth is gamma-

distributed with mean= 1, then frailty among individuals surviving to age x is also gamma

distributed, with parameters (λ + H(x), k). Then by definition (9), the average frailty z̄

at age x is

z̄(x) =
k

k + H(x)
. (10)

From (10) and (8), we easily compute cohort mortality hazard µ̄(x). Figure 3 shows

two examples of the observed mortality hazard µ̄(x), compared to the hazard for the stan-

dard individual µ(x), in a cohort with a gamma-distributed frailty and different standard-

individual hazard trajectories.

The effects of unobserved heterogeneity on the observed cohort-level effect of

education

In the previous analysis, age was the only predictor of mortality hazard, and the aim of

the analysis was to determine the relationship between the observed mortality hazard and

individual hazards. In this section I will extend the calculations to consider the effect

of unobserved heterogeneity on the estimates of mortality predictors, such as education,

across age. After explaining the assumptions, I will show the mathematics for relating

the individual and cohort trajectories of the education effect.

Assumptions

I make several assumptions in the analysis. First, like in the previous section, I assume the

level of frailty Z to be constant for individuals across age. Second, I begin the simulation at

age 25, when I assume all education to be completed. This assumption is rather common

in previous research in social epidemiology (for example, see Lauderdale 2001). It does not

3See Vaupel, Manton and Stallard 1979, and Vaupel and Yashin 1985a, for detailed discussion and

proofs.
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mean that the effect of education remains constant across the lifecourse—I will explore

both converging and diverging education trajectories—but the level of achieved education

does not change for an individual, similar to the constant within-individual level of frailty.

Third, I am making the assumption that education has a causal effect on mortality. Both

theoretical perspectives of the lifecourse pattern of education and mortality, convergence

and cumulative advantage perspective, make this assumption. Finally, I assume that the

level of education and frailty for any individual are not correlated. In terms of the model

specification, it means that the distributions of frailty f(Z) and education f(E) in the

population are independent of each other.

Calculating the cohort-level education effect

Denote the effect of an additional year of education on mortality for an individual E(x),

and the observed effect for a cohort Ē(x). In most empirical studies, the effect of education

is assumed to be linear on log mortality. Then comparing the mortality level at any two

adjacent levels of education will give us the effect of education Ē(x). Let the two compared

groups be represented by subscript δ for individuals with lower education, and subscript

1 for individuals with higher education4. A schematic version of the equation estimated

in empirical studies is Y = Xβ + ε, where X denotes years of education, β denotes the log

effect of a unit (say, a year) of education, Y is the change in the log mortality rates per

unit change in schooling, and ε is the residual variance. So the actual estimated equation

is logĒ(x) = logµ̄δ(x) − logµ̄(x). (I am using the bars to emphasize that the empirical

studies use only the observed, cohort-level information). Exponentiating this equation

gives us the effect of education on mortality as the ratio of observed mortality of the

lower-education individuals over higher-education individuals:

Ē(x) =
µ̄δ(x)

µ̄(x)
(11)

Empirical studies measure the cohort effect of education on mortality Ē(x), and use

this variable to infer the individual-level effect E(x). In order for this inference to be

unbiased, the two effects must be equal Ē(x) = E(x). I will show below that if there is

unobserved heterogeneity in the cohort, the two effects will in fact not be equal. I will to

4Like in the section above, the subscript 1 will be dropped in subsequent equations
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simulate the individual trajectories of the effect of education on mortality E(x), which are

not observable in empirical data analysis. Then I will compute the resulting cohort-level

trajectories, and compare the two.

In the simulation model, the effect of education is defined the same way as in the em-

pirical data, to be multiplicative on the baseline hazard (note that this equation describes

individual effects):

µδ(x) = E(x)µ(x) (12)

Clearly, equation (11) above is the same as (12), with the difference that the former

describes the the effect of education on mortality hazard for cohort, and the latter for an

individual. As I showed in the previous section, for a frailty-homogeneous cohort, these

two would be equal. Thus, the observed effect Ē(x) would yield an unbiased estimate of

the individual-effect of education E(x).

However, in a cohort with unobserved heterogeneity, both low and high-education

groups µ̄δ(x) and barµ(x) comprise individuals with different levels of frailty Z, and the

observed hazard differs from the individual trajectory as I showed in the preceding section

in (8). Because the underlying standard-individual hazards and cumulative hazards in the

low and high education groups differ (by the effect of education E(x), from (??) clearly the

average frailty z̄(x) will change at different rates for the low and high education groups.

As a result of this difference, the observed low-education group hazard µ̄δ(x) diverges from

the individual-level µδ(x) at a faster rate than the high-education observed hazard µ̄(x)

diverges from the individual trajectory µ(x). This disparity causes the observed effect of

education to differ from the individual trajectory.

Model parameters

The parameters of the simulation model include the shape of the standard-individual

mortality hazard µ(x), distribution of frailty f(Z), and the effect of education E(x) on

the baseline hazard across age. First I will present the ’medium-value’ parameters used

in the basic model, and I will also vary the parameters for effect of education across age

E(x), and the distribution of frailty (the latter by varying parameter k).
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The distribution of µ(x) will be described by Gompertz function:

µ(x) = bcx (13)

The source for parameters b and c is the U.S. life table for 1989-1991 (National Center

for Health Statistics 1997). This life tables represents the population mortality trajectory.

I used the published values of survival curve S̄(s) to compute the hazard µ̄(x). I fitted

the values of µ̄(x) in a log-linear model to determine the parameters b̄ and c̄. Then in

the simulation model I chose arbitrary values for the parameters, b∗ and c∗ and ran the

simulation model, noting the resulting cohort values b̄∗ and c̄∗. I compared those values

to the U.S. life table parameters b̄ and c̄. Then I adjusted the model baseline hazard

parameters so that the resulting cohort mortality parameters from the simulation b̄ and c̄

approach the source parameters, and repeated the process until both parameters matched

the source precisely. The resulting parameters used in this paper are

b = 0.000385 and c = 1.095.

The effect of education (no added effect on baseline mortality hazard, or HE as the

baseline group) and LE = 2 in the basic model. This value is based on estimates by Elo

and Preston (1996) and distribution of educational achievement in the US from US Census.

Elo and Preston showed that estimates of the effect of an additional year of education

centered around 8 percent reduction in log mortality rates in a number of studies - that

is, log mortality associated with any year of education is 92% of log mortality associated

with one year less education. If the US population is split along the approximate median

educational achievement and educational attainment means of each half are computed,

there is about 8 years of schooling difference between these two large groups. Another

way to think about this difference is that I compare mortality of individuals with grade

school education and college diploma—these two groups differ also by 8 years of schooling.

The .928 ≈ .55, or the less-educated half suffers about half the mortality, compare to the

better-educated half. For easier interpretation of the figures, I chose to use the better-

educated group as the baseline and the less-educated group will then suffer mortality

approximately 1
0.5
≈ 2 times higher.
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Results

Figure 4 below shows the main results of the simulation model. It contains a set of nine

plots that vary in the parameters E(x) and k. All plots shows the individual and cohort

lifecourse trajectories in the effect of education on mortality. The individual trajectories

are stipulated by the simulation model. The observed trajectories result from observing

the aging frailty-heterogeneous cohort and capturing the resulting trajectories. Thus the

simulation model goes from individual-level to cohort-level pattern. In an observational

study, we would not have access to the individual trajectories, only the observed cohort

patterns. Having the both together will allow us to map the cohort patterns and individual

patterns together.

The rows of the plots in figure 4 show different lifecourse trajectories of the individual-

level effect of education. In the first row, the effect of education on mortality is unchanging

with age. The effect is 8% lower mortality hazard for each year of additional schooling,

as suggested by Elo and Preston (1996). In the second row, the effect of education is

increasing through age, as the cumulative-advantage perspective suggests. Finally, in the

third row, the individual trajectory shows the weakening effect of education — describing

the age-as-leveler perspective. In the latter two cases, the average effect across age remains

8%. The columns vary the distribution of frailty in the cohort. The first column shows

a cohort with a distribution defined by k = 2, the middle column k = 4, and the third

column the distribution is defined by k = 8.

The first three plots show that if the individual trajectory was flat, that is, if the

effect of education remained constant across age, we would observe a converging pattern

at the cohort level. The bias in the cohort effect, compared to the individual-level effect,

increases with age. In young adulthood, mortality hazard is very low, so there is little

mortality selection affecting the results. At the hazard increases exponentially, by middle

adulthood, the mortality selection begins to start taking the high-frailty individuals out

of the cohort at higher rates, thus creating the bias. The higher the variance of the frailty

in cohort (associated with lower parameter k), the larger degree of bias occurs. However,

even in a cohort with relatively little variance in frailty as shown in third column, the

observed effect is converging in the old age.

The second row of plots describes individual-effect of education that correspond to

the cumulative advantage perspective. This series shows that even under various spec-
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ifications of frailty, we would not observe the diverging pattern - there may be some

cumulative advantage in up to middle adulthood but in the old age the cohort data would

show convergence. That pattern is similar to inverse U-shape finding by House et al.

(1990; 1004). This group of plots shows that unobserved heterogeneity has impact on

the observed patterns that is strong enough to completely reverse the general lifecourse

pattern observed for the cohort.

Finally, the third row of plots displays individual lifecourse trajectories corresponding

to the age-as-leveler or convergence perspective. The resulting cohort pattern is also

convergence, albeit with a more steep pattern of weakening of the effect of education.

All these nine plots show that the cohort effect is biased downward - that is, compared

to the individual-level effect, the cohort effect of education is weaker, and the difference

increases with age.

In addition, I have also explored the inverse U shape of the effect of education on

mortality that House et al. (1990, 1994) found. Figure 5 below shows the individual and

cohort-level effects of education when the individual trajectory is quadratic. As I discussed

above, the cohort pattern first closely follows the individual pattern as mortality selection

is weak in young adulthood. As the aging cohort experiences higher mortality overall,

the observed effect becomes more strongly downward biased. However, as figure 5 shows,

if the underlying individual-lever trajectory was indeed quadratic, we would observe a

similar quadratic pattern in the cohort.

Mathematically, we can show in general that the difference between the individual

and cohort level trajectories is a necessary consequence of unobserved heterogeneity in

a cohort. 5 Equation (11) describes the relationship between the group mortality rates

and the cohort effect of education Ē(x) = µ̄δ(x)/µ̄(x). We also know from (8) that

µ̄(x) = µ(x)z̄(x), and finally from (12) we can substitute µδ(x) = E(x)µ(x).

Thus,

Ē(x) =
µ̄δ(x)

µ̄(x)
=

µδ(x)z̄δ(x)

µ(x)z̄(x)
=

E(x)µ(x)z̄δ(x)

µ(x)z̄(x)
.

In cohort with gamma-distributed frailty, z̄(x) was calculated from k and the cumulative

hazard for the standard individual H(x) as z̄(x) = k/[k + H(x)]. Above I showed (using

the effect of frailty z in (5) that an effect that is multiplicative on the mortality hazard

5This calculation depends on gamma-distributed frailty, but other, less tractable distributions, which

could be modeled by microsimulation, would yield comparable results.
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is also multiplicative on the cumulative mortality hazard. This applies to the effect of

education E(x) (see (12)), so that Hδ(x) = E(x)H(x). Then

Ē(x) =
E(x)µ(x)z̄δ(x)

µ(x)z̄(x)
=

E(x)z̄δ(x)

z̄(x)
=

E(x)[k/k + E(x)H(x)]

k/k + H(x)
.

With some simple algebra, we finally obtain

Ē(x) =
k + H(x)

k/E(x) + H(x)
. (14)

This is a general expression that relates the individual effect of education on mortality

and the cohort effect through distributions of frailty Z and the baseline mortality hazard

µ(x). This expression depends on the distribution of frailty specified by gamma distribu-

tion, but it does not depend on the shape of the baseline mortality hazard. That is, even

if the baseline hazard was constant (or had some other shape, not Gompertz as I used

in the simulation), we would observe the same general pattern of the divergence between

individual and cohort patterns in the effect of education.

Clearly, as k → ∞, the cohort observed Ē(x) will equal the individual trajectory

E(x). Since σ2 = 1/k, such a distribution describes a cohort with no variance—hence,

a homogeneous cohort. This proves that a homogeneous cohort will show no disparity

between the observed cohort effect of education Ē(x) and the individual trajectories E(x).

Also, equation (14) above shows that for a given distribution of frailty in population

and individual-level effect of education, k and E(x), as the cumulative hazard H(x)

necessarily increases with age, the ratio will gradually approach 1. This shows that the

bias in the observed effect of education increases with age, which all figures displayed

graphically. Furthermore, if the individual effect of education E(x) = 1, that is, if there is

no effect of education on mortality hazard, then there is also no bias in the cohort effect

of education Ē(x) = E(x).
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Discussion and summary

Research on unobserved heterogeneity has been employed by demographers to explain the

deceleration of mortality hazard growth at the oldest ages in humans and other species

(Vaupel 1997), as well as mortality crossovers at the oldest ages that have been observed

for pairs of groups in a population (Johnson 2000; Wing et al. 1985). In this paper, I

extended the analysis of the effect of unobserved heterogeneity to study its effect on the

coefficients for education as a predictor of mortality across age.

Using mathematical simulation, I showed that unobserved heterogeneity in a cohort

systematically biases the coefficient for education as a predictor of mortality toward zero.

The analysis does not allow us to prove or reject either the convergence or cumulative

divergence perspectives on lifecourse trajectory of the effect of education. What the

analysis did show is that if the convergence theory is correct, then we would observed

cohort pattern that is generally comparable to the individual trajectory. However, I also

showed that if the divergence theory is correct, that is, if the individual lifecourse pattern

for the effect of education is difergence, it is possible for the observed pattern to have

instead the opposite, convergence or inverse U-shape pattern.

Thus I was able to reconcile the cumulative advantage theory with evidence that mostly

supports the convergence theory. Although the degree of bias depends on the value of the

parameters in the model, the basic result is very robust: unless the cohort is homogeneous

(all heterogeneity is captured by the predictors in the model), which is not very likely, the

observed cohort-level lifecourse patterns will differ from the individual-level trajectories.

Using different parameters in the simulation model would certainly effect the degree of

bias in the observed pattern, compared to the individual trajectory of the education effect

on mortality, but the general pattern of findings is very likely to remain unaffected.

Unobserved heterogeneity in a model is basically problem of omitted variables. More

specifically, unobserved heterogeneity can be compared to the Simpson’s paradox (Pearl

2000) in which compositional differences within groups produce counterintuitive and bi-

ased results for the entire population. In cross-sectional models, unobserved heterogeneity

put in the error term does not bias the estimates of coefficients if it is not correlated with

the predictors. In study of lifecourse patterns, however, unobserved heterogeneity that

has effect on mortality will bias the estimates of predictors even if they are not correlated.

There is a limited literature on the effects of unobserved heterogeneity in survival anal-
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ysis models (Heckman and Singer 1984; Heckman and Singer 1982; Manton, Stallard and

Vaupel 1981; Trussell and Richards 1985). Most research on SES-health relationship, how-

ever, neglects the presence of heterogeneity in the population. Social science is ultimately

interested in understanding individual-level process, not just describing population-level

phenomena. However, researchers need to be aware of the problematic issues involved in

making individual inferences from population data gathered from observational studies.
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Figure 1: Individual and Cohort Mortality Hazards in a Cohort with 2 Homogeneous-

Frailty Groups
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Note: In the first plot, frailty is distributed as z = 1 and z = 2, and µ(x) = 0.08. In the

second plot, the two mortality hazards are specified separately.
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Figure 2: Gamma Density function with parameter k=2,4 and 8
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Figure 3: Individual and Cohort Mortality Hazards in a Cohort with Continuously Dis-

tributed Frailty.
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Note: In the both plots, frailty is gamma distributed with parameter k = 2. In the first

plot, µ(x) = 0.08 and in the second µ(x) is Gompertz-distributed with parameters(??).
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Figure 4: Individual and Cohort Mortality Hazards in a Cohort with Continuously Dis-

tributed Frailty.
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Note: In the first column, k = 2, second column k = 4, and in the third column k = 8.

Each row contains a different lifecourse trajectory of the effect of education on mortality.

In all plots, mortality hazard µ(x) is Gompetrz-distributed with parameters as in (??),

frailty is gamma distributed with parameter k = 4.
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Figure 5: Effect of Education—Individual and Cohort Trajectories.
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.000019277x2 − .001522887x + 0.94. Frailty is gamma distributed with

parameter k = 4, mortality hazard µ(x) is Gompertz-distributed with

parameters (??).
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