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ABSTRACT 

 
We develop methods that use combined June CPS samples to estimate time series of age-
specific fertility rate (ASFR) schedules for subpopulations not identified in US vital 
statistics reports. We use a new model for the shape of the ASFR schedule, and new 
statistical methods for extracting fertility information from CPS data. These innovations 
allow estimation of plausible and useful time series of ASFRs over 1960-2000, even for 
relatively small groups. Our main goal is to produce age- and time-specific estimates of 
the fertility of Mexican-born and other immigrant women while they reside in the US. 
These rates are important for understanding the expected and potential contribution of 
immigrant fertility to future US population change. The methods that we develop are also 
applicable to many other subpopulations of interest. 
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Introduction 

 Demographers studying vital events need both numerators (event counts) and 

denominators (person-years at risk). Census or vital registration data are often inadequate 

for sociologically-oriented studies, because they lack one (or both) of these prerequisites. 

In the case of fertility research, analysts need to use specialized surveys if they wish to 

study childbearing behavior in socioeconomic groups for which numerators are not 

available from birth certificates (e.g., women of Irish ancestry), or groups for which 

population estimates are unreliable or nonexistent (e.g., women 30-34 born in South 

America).  

 In the case of US fertility, the next-best data source in such cases is usually the 

June fertility supplement to the Current Population Survey (CPS). Rindfuss, Morgan, and 

Offutt (1996), for example, used June CPS data in a study of historical trends in race and 

education-related differentials in US fertility. Morgan et al. (1999) found CPS data 

superior to vital statistics for studying racial differences in first birth timing. Swicegood, 

Morgan, and Rindfuss (1984) concluded that pooling samples from June surveys in 

separate years was a useful (and safe) strategy for expanding sample sizes.  

 In this paper we use June CPS data for a similar purpose – namely, estimating late 

twentieth-century (1960-2000) fertility patterns among immigrants living in the US. In 

addressing this specific estimation problem, we also present a new and very general 

approach to using pooled CPS samples that allows maximum use of the available fertility 

information. Our primary goal is to establish the feasibility of using fertility histories 

collected in June CPS data, which are retrospective and often incomplete, to reconstruct 

historical fertility schedules for groups not included in vital statistics or census reports. 



 
Data  

June CPS fertility supplements, taken at irregular intervals over 1986 to 2000, 

collected retrospective birth histories for women at or above childbearing ages. The age 

range of these women varied slightly between surveys, as did the completeness of the 

birth histories. In all surveys, women were asked their age, number of children ever born, 

and the month and year of their most recent birth (if any). Some June CPS surveys also 

contain data on the month and year of woman’s first birth. The June 1995 survey was the 

most complete, with month and year data on births 1…4 for each woman (if they 

occurred) in addition to the month and year of last birth (birth L). We restrict our samples 

to CPS surveys that also collected information on mother’s nativity, immigration history, 

and parents’ places of birth; these surveys are from June 1986, 1988, 1994, 1995, 1998 

and 2000.  

Table 1: Counts of Women and Births in June CPS Fertility Supplements 

 1986 1988 1994 1995 1998 2000 TOTAL
# women 15-64     32,481    29,531    31,850     47,410    27,024     26,629  194,925 

# foreign-born      3,557     3,188     3,437     5,162     3,228      3,426    21,998 
   
Which births recorded? 1,L 1,L L 1234,L L L 
   
# Children Ever Born     44,754    40,325     39,690    79,903    33,387     32,903  270,962 
# Undated Births      9,926     8,652    21,315     2,542    17,790     17,601    77,826 
# Dated Births     34,828    31,673    18,375    77,361    15,597     15,302  193,136 
# Dated US Births     33,629    31,008    17,992    73,484    15,267     14,909  186,289 

pre 1960           78            4          0     7,743          0           0     7,825 
1960-1969      5,495     3,431          50    15,749            2           0    24,727 
1970-1979     14,180    12,069     2,391    17,876        780         348    47,644 
1980-1989     13,876    15,504     7,643    19,891     4,589      3,511    65,014 
1990-2000          0         0     7,908    12,225     9,896     11,050    41,079 

 



Table 1 provides a summary of the six surveys used in our analysis. In the table 

births are identified as “dated” if the month and year of birth are known, and as 

“undated” otherwise. Dated births are further subdivided by whether or not they occurred 

in the US, and (if they occurred in the US) by decade. Together the June CPS fertility 

supplements contain fertility histories for nearly 200 thousand women aged 15-64. These 

women reported a total of approximately 271 thousand children ever born, with timing 

information available for over 193 thousand births (71%), but unavailable for another 78 

thousand (29%). 

 

Nonhomogeneous Poisson Model of Birth Timing 

The primary difficulty in using CPS birth data for historical fertility estimation is 

that timing information is unavailable for some births. If a CPS survey collected dates for 

at most n births, then some of the births to women with parity B > n will have missing 

dates. We propose to overcome this difficulty by constructing a continuous-time event 

history model in which even partial birth histories have well-defined likelihoods. The 

model allows us to use both parity and timing data when fitting the fertility model, and to 

combine information from multiple (June CPS) surveys that cover similar historical 

periods with different levels of detail about birth timing. 

We assume that waiting times to births are drawn from a nonhomogeneous 

Poisson process, with age-specific hazard rate f(a) and cumulative hazard F(a).  The term 

“nonhomogeneous” refers to the variability of rates across ages; all women at a given age 

are assumed to face an identical hazard. In such a model, f(a) also equals the density of 

expected events at age a, F(a) equals expected parity at age a, the number of births to a 



woman in any age interval (a,b) has a Poisson distribution with parameter F(b)-F(a), and 

numbers of births in any pair of non-overlapping intervals are independent (Ross 

1983:46-47). These are strong mathematical assumptions. The assumption that age alone 

determines fertility hazards is clearly simplistic. We relax this in the model below by also 

adding period effects, but we have omitted parity, immigration history, and many other 

factors that may belong in a model of fertility risks.  We do not argue that our model is 

complete; we do assert that it is a useful device for summarizing the recent history of age-

specific fertility patterns.  

In the age-specific model both complete and partial timing histories have well 

defined likelihoods. Suppose, for example, that a CPS survey collects data on ages at first 

and last births only.  Consider two women with these histories: 

#1. Age 41. Two children, born at exact maternal ages 21 and 29 
#2  Age 41. Four children, with the first born at age 21 and the last at age 29 
 

The likelihood of the first woman’s (complete) history is 

e f e f eF F F F F− − − − −⋅ ⋅ ⋅ ⋅( ) ( ( ) ( )) ( ( ) ( ))( ) ( )21 29 21 41 2921 29   

where the two f( ) terms represent births at known times and the exponential terms 

represent the probabilities of observing zero births in each of the intervals (0,21), (21,29), 

and (29,41). The likelihood of the second woman’s (incomplete) history is 

[ ]e f e F F f eF F F F F− − − − −⋅ ⋅ ⋅ − ⋅ ⋅( ) ( ( ) ( )) ( ( ) ( ))( ) ( ) ( ) / ! ( )21 29 21 2 41 2921 29 21 2 29  

where the multiplicative terms have the same meanings, except that the middle term now 

represents the probability of observing two (rather than zero) births over age interval 

(21,29). The log likelihoods for these women have intuitive forms: 

[ ]
(# ) ( ) ln ( ) ln ( )

(# ) ( ) ln ( ) ln ( ) ln ( ) ( ) ln !
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The likelihood of a birth history is based on the density at any known ages of birth f, and 

on the fact that births over an interval (a,b) are Poisson distributed with parameter 

F(b)-F(a). Complete birth histories like #1 are special cases, in which all births have 

known times and all gaps therefore contain zero births.   

Let us now establish a general system of notation for (possibly) incomplete 

histories and their likelihoods. Consider a CPS survey taken at exact time y that records 

each woman’s age (A), parity (B for “births”), and exact maternal age (or equivalently, 

exact dates) at up to n births (ages a1…an). Because low-parity women may not need all 

of the n available age variables, define dummy indicators δi that equal one if there is an 

age at birth recorded in ai, and equal zero otherwise. The number of “dated” births is thus 

D=Σ[δi], with D≤n. If parity exceeds n, then by convention an records age at last (rather 

than nth) birth, and ages for births n…B-1 are omitted. All women therefore have B-D 

births during age interval [an-1, an], but for many women all births are dated and B-D=0.  

If fertility hazards f(a,t) vary with both age and time, then the log likelihood of an 

individual history is  

Equation 1 
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and the log likelihood for a sample of independent histories would be sum of individual 

log likelihoods with this form. The expression is more complex than those above because 

summations are over cohort paths through (a,t) pairs rather than over age only, but is has 



the same essential form – minus the cumulative hazard, plus the log fertility rates at all 

dated births, plus Poisson probability terms for undated births. 

In practice, the CPS measures ages and times in discrete integer units. To simplify 

calculations while retaining the analytical advantages of continuous-time notation, we 

discretize ages and dates as described in Appendix A. For foreign-born women we use 

the reported date of immigration (typically recorded as a range of several calendar years) 

to censor any part of the reported birth histories that could have occurred outside the US. 

 

Parametric Specification for f(a,t) 

 We use the constrained quadratic spline (QS) model described in Schmertmann 

(2003) to describe period ASFR schedules. The QS model has four graphical parameters: 

the age at which fertility first rises above zero (α), the age at which fertility reaches its 

peak level (P), the age at which fertility falls to half its peak level (H), and the peak level 

of fertility (R). We assume that these four parameters vary over time, so that the period 

ASFR schedule at time t is 

Equation 2 

f a t f a R t t P t H t( , ) [ | ( ), ( ), ( ), ( )]*= α                                    

where f*( ) is a QS model schedule. For parameters R, α, P, and H we modeled smooth 

time series as  
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The 12 time series parameters (aR…cH) therefore generate a complete f(a,t) surface via 

(Equation 3) and (Equation 2). The time series for level parameter R is a quadratic spline 

with knots at 1970 and 1985. We selected the two dates arbitrarily, but results appear to 

be insensitive to the exact number or placement of knots. Time series functions for P and 

H ensure that they fall in demographically appropriate age ranges (between 1 and 21 

years above α and P, respectively); this slightly complicated specification avoids 

numerical instabilities, by ensuring that the search algorithm cannot wander into 

demographically impossible parameter spaces.  

Our specification allows considerable variability in level parameter R over the 

period under study (1960-2000), somewhat less variability in P and H, and no variability 

in the initial age parameter α. Fitting results for contemporary Swedish fertility schedules 

in Schmertmann (2003) suggest that period fertility levels vary more rapidly than shape 

parameters, and that the specification in (Equation 3) can generate a variety of realistic 

f(a,t) surfaces.  

The model’s core variables are the 12 time series parameters (aR…cH). Fertility 

hazards affecting the likelihood of CPS sample histories are generated via Equations 

(Equation 3) and (Equation 2), and we use a nonlinear optimization program 

(specifically, PROC NLP in SAS) to find the time series parameters that maximize the 



log likelihood of a pooled sample of CPS fertility histories taken from June 1986 through 

June 2000. Our procedure therefore answers the following question:  

What historical patterns in the level and shape of period fertility schedules best 
match the data on timing and number of births to women in different cohorts? 

 

CPS Estimates vs. Vital Statistics, for Subpopulations with Known Fertility 

 Our ultimate objective is to estimate fertility histories for subpopulations not 

covered by vital statistics. As an intermediate step toward that goal, we first compare 

results from the CPS model to vital statistics for groups whose fertility rates are included 

in official publications. We can be more confident about CPS estimates for “exotic” 

subpopulations if CPS estimates for “standard” subpopulations match available data from 

other sources.    

Figure 1 

 
We begin by comparing vital statistics to 

CPS estimates for all women residing in 

the US. Figure 1 displays the time series of 

TFR from vital statistics (VS)  

as open squares (data from NCHS 2003, 

Table 4), and estimates from the pooled 

CPS histories as a solid line. CPS sample 

dates are marked on the horizontal axis 

with solid squares.  
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Vital Stats & CPS Estimates: All Women

CPS estimates match the main trends in VS, particularly the fall in TFR over the 

1960s, followed by a slow rise. The two time series are also quantitatively similar, with 

TFR near 3.5 at the start of the series and near replacement level at the end.  

The overall impression in Figure 1 is that the CPS estimate is a smoothed version 

of the VS time trend. As such, it misses some interesting details in the VS series. 

Assuming VS data are correct, the CPS model time series underestimates fertility levels 

in the early 1960s, overestimates in the early 1970s, and misses the positive blip around 

1990. Much of the discrepancy arises because VS data indicate a gradually rising TFR 

beginning in the mid-1970s, but the CPS-fitted TFR does not begin rising until the early 

1980s.  As stated earlier, the estimated CPS time trend is insensitive to the selection of 

knots for the quadratic spline time trend in the fertility level R. The difference in the 

timing of the fertility trough therefore appears to be a real feature of the CPS data, rather 

than an artifact of modeling decisions.  

Figure 2 

 Because we are estimating 

complete f(a,t) functions, rather than 

period TFRs, it is also important that the 

pooled CPS estimates yield plausible time 

series for age-specific fertility rates. 

Figure 2 and Figure 3 below provide 

information on age-specific model fits. 

Figure 2 displays both 5fx values from VS 

data (NCHS 2003) and the QS model 

schedules estimated from CPS data, for selected years. These data are for all US women. 
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Model schedules estimated from partial CPS histories match the empirical data well, but 

of course not perfectly. CPS fits are generally good, but they only partially capture the 

gradual shift toward births at higher maternal ages: in both 1990 and 2000, for example, 

the QS model appears to underestimate fertility in the 30-34 age range. 

  

Figure 3 

Figure 3 provides a more complete 

time series view, with slightly less age 

detail than Figure 2. Figure 3 shows time 

series for 5f15, 5f25, and 5f35, over single 

years from 1960-2000. The blue lines 

represent QS model fits from CPS data, 

and the open squares represent VS data for 

1970-2000 from NCHS (2003). Because 

NCHS (2003) data go back only to 1970, we have supplemented the vital statistics with 

period 5fx values calculated from Heuser (1976); these supplemental points are indicated 

by Hs in the plot. As with earlier comparisons, Figure 3 shows that CPS model fits are 

generally very good, but hardly perfect. Rate differences between CPS estimates and 

other data sources tend to be small. The CPS model fits reflect the major time trends in 

age-specific rates, but they may also tend to smooth out some interesting year-to-year 

nuances. 

We emphasize that our estimation method does not attempt to fit the histograms 

in Figure 2 (or the time series in Figure 1 and Figure 3) directly. Instead, the estimates in 

the figures correspond to the parametric time trends in period ASFR schedules that 
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maximize the likelihood of dated and undated CPS births. The close correspondence with 

historical VS data suggests that CPS data are of high quality, and that our parametric 

specification is appropriate for describing historical trends. 

We ultimately wish to estimate f(a,t) values for subpopulations, rather than for all  

women. To this end, we display in Figure 4 the CPS estimates of the TFR for Black Non-

Hispanic and White Non-Hispanic women (top solid and bottom dashed lines, 

respectively). Vital statistics TFRs for these exact groups are included in the figure as 

triangles and squares for 1989-2000. Because disaggregation by Hispanic ethnicity is 

impossible in VS data before 1989, the plot includes supplemental information for race- 

(but not ethnicity-) specific TFRs for 1970-2000, supplemented by Heuser’s race-specific 

time series for 1960-1969 (Heuser 1976). See the figure’s key for details. Once again, the 

plot demonstrates that a model fit to pooled CPS data replicates known fertility patterns 

fairly accurately. CPS fits generally exhibit the same levels and patterns found in more 

complete data from other sources.  

Figure 4 

 
The overall conclusion that we draw 

from these comparisons is straightforward: 

fitting the relatively small (12-parameter) 

time series model to pooled CPS data from 

1986-2000 produces a very good picture US 

fertility trends from 1960-2000. Estimated 

TFRs and age-specific rates are quite 

accurate, and the procedure also appears to 



capture trends within and differences between subpopulations. The model’s ability to 

reproduce known time trends for familiar populations and subpopulations gives us 

confidence that it will also produce good estimates for the “exotic” subpopulations that 

we address next. 

 

CPS Estimates for Immigrant Subpopulations  

Fertility of Native-Born and Foreign-Born Women 

We now turn to CPS time series estimates for fertility among immigrants in the 

US. Data on the fertility rates of foreign-born women are fairly scarce even for recent 

periods, primarily because the Census Bureau does not produce the requisite 

denominators (intercensal population estimates by age, sex, ethnicity, and place of birth). 

Figure 5 reproduces the time series of TFR estimates for all women (solid blue line), and 

decomposes it by maternal place of birth (native-born women as a black dashed line, 

foreign-born as a red dotted line). 

Figure 5 

Several interesting features in the 

figure merit comment. The estimated total 

fertility of native-born women has tracked 

that of all women fairly closely, falling 

from Baby Boom highs near 3.5 in the late 

1950s, and then rising slowly to near-

replacement levels in the late 1990s. 

Estimated TFR among foreign-born US 
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residents was less volatile, starting near 2.6 in 1960, reaching a low near 2.2 in the mid-

1970s, peaking near 2.8 in the mid-1990s, and falling very slightly to approximately 2.7 

in 2000. These estimates suggest that the presence of foreign-born women in the US 

probably lowered overall fertility slightly during the late Baby Boom years, but has 

raised overall fertility since the late 1960s.  These effects are visible in the divergence 

between the time series for Native-Born and All women. The positive effect of foreigners’ 

fertility on US TFR increased after 1970 not only because of an increasing gap between 

foreign-born and native TFR, but also because of the increasing proportion of foreigners 

in the US population (Schmidley 2001, Figure 1-1).  

Figure 6 

CPS estimates also allow 

investigation of immigration’s 

contribution to age-specific fertility rates. 

Figure 6 provides examples, by depicting 

the estimated fertility schedules for native-

born, foreign-born, and all US women in 

four selected years from 1970 to 2000. 

(Remember from Figure 5 that by 1970 

foreign-born TFR was already slightly 

higher than native TFR). As in Figure 5, one can see the increasing influence of foreign-

born fertility on US averages. Figure 6 shows clearly that the estimated foreign-born 

fertility schedule was slightly “older” than the native-born schedule in 1970: the mean 

age of childbearing from the 1970 estimated schedules is 26.9 for natives, and 27.4 for 

foreigners. Slightly later childbearing by foreigners makes intuitive sense, because of 
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possible delays in other life cycle events (esp. marriage) associated with a move to the 

US as a young adult. It is difficult to compare the shapes of the native and foreign-born 

schedules once their levels after 1970, but the difference in mean age persists and even 

grows slightly larger by 2000 (when estimated mean age equals 27.4 for natives and 28.3 

for foreigners).  

It is well known that changes in birth timing affect period TFR levels, even when 

the lifetime average number of births per woman remains constant  (Ryder 1964). 

Interestingly, CPS estimates suggest that the increasing fertility contribution of foreign-

born mothers has caused the US mean age of childbearing to increase slightly more 

rapidly than it would have otherwise. Timing changes would therefore tend to depress 

period TFR for all three groups in Figure 5. We emphasize, however, that shape changes 

in Figure 6 are small, as are any effects on period TFR. 

  

Fertility of Mexican-Born and Other Foreign-Born Women 

The composition, as well as the size, of the US foreign-born population changed 

significantly over the 1960-2000 period covered by the pooled CPS estimates. In 1960 

approximately 85% of US foreign-born residents were European or Canadian, 9% were 

Latin American, and 5% were Asian. By 2000 the figures were 18% European or 

Canadian, 51% Latin American, and 26% Asian. (Schmidley 2001, Figure 2-2). More 

than one quarter of the foreign-born population in 2000 came from a single country: 

Mexico. (Schmidley 2001: 12). Among the more narrowly defined population of foreign-

born women 15-49, the place-of-origin distribution probably changed even more 

dramatically over 1960-2000. 



The large changes in the composition of the foreign-born population complicate 

the interpretation of time series such as those in Figure 5. For example, it is probable that 

foreign-born TFR was below native TFR in the 1960s because immigrant women of 

childbearing age were mainly from European countries that did not have sustained, US-

style Baby Booms after World War II. The estimated increase in foreign-born TFR from 

the mid-1970s to the early 1990s may be due to the increasing proportion of immigrant 

women from relatively high-fertility Latin American countries (esp. Mexico).  

Figure 7 

In this subsection we illustrate the 

potential of the CPS model to address such 

compositional questions, by further 

disaggregating the foreign-born population 

into “Mexican-born” and “Other”. Figure 

7 shows the time series of estimated TFR 

for all foreign-born women (identical to 

that in Figure 5), as well as the estimated 

TFR series for Mexican-born and Other foreign-born residents. The figure illustrates that 

the fertility level of Mexican women in the US has been high and, for much of the last 40 

years, climbing. Estimated Mexican-born TFR was near 2.8 in 1960, climbed to near 3.7 

in 1990, and has fell slightly to near 3.4 in 2000.  The fertility of other immigrant women 

remained fairly stable over 1960-2000, starting near 2.6, falling to a minimum near 2.0 in 

the late 1970s, and rising again to approximately 2.3 in 2000. As expected, Mexican 

women exerted a steadily increasing influence on the fertility levels of the foreign-born;  
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this can be seen in the way the “all foreign-born” curve has increasingly been pulled 

toward that for Mexican-born women. 

Figure 8 

We can also decompose the age 

patterns of foreign-born fertility into 

“Mexican” and “Other” components, as 

illustrated in Figure 8. This figure depicts 

estimated ASFR schedules for four 

selected years, once again using the 

groups in Figure 7. We note that the 

Mexican-born fertility schedule has been 

consistently “younger” than that for other 

foreign-born women. Although it is not especially easy to perceive in the graph, the age 

schedule for other foreign-born women has shifted rightward over time (similar to the 

shift for native-born and for all women). Interestingly, the combination of (1) a 

rightward-shifting schedule for “other”, (2) a consistently younger schedule for Mexican-

borns, and (3) an increasing proportion Mexican, has resulted in a fairly stable age pattern 

in the foreign-born ASFR curve.  

 

Conclusion 

We have attempted to demonstrate the feasibility of estimating historical age- and 

period-specific fertility rates for relatively small subpopulations from pooled CPS 

samples. We faced two main obstacles: small sample sizes and incomplete birth histories.  



Pooling June CPS samples from different years creates samples that may contain 

several thousand women in categories of interest, such as “women born in Mexico”. 

These subsamples are still rather small for estimating age- and period-specific fertility 

f(a,t), even if one uses five-year increments of age and time. Our approach uses 

parametric models to fill the data breach. Specifically, we assume that period fertility 

schedules belong to the family of quadratic spline models described in Schmertmann 

(2003), and that period fertility schedules change smoothly over time. For each 

subpopulation that we study (all women, foreign-born women, Mexican-born women, 

etc.), our model summarizes fertility rates over a 41x41 grid of single-year (a,t) values by  

using 12 parameters to describe time paths for level and shape parameters of period 

ASFR schedules.   

We deal with the second obstacle, incomplete birth histories, by modeling birth 

times as outcomes of a nonhomogeneous Poisson process, in which all women in a cohort 

face an identical schedule of age-specific fertility hazards. The Poisson model allows 

estimation of likelihoods for both complete and incomplete birth histories in a unified 

mathematical framework. It also allows use of parity data, which is a significant 

advantage over other approaches, particularly for CPS samples in which dates are 

available for only one or two of a woman’s births. 

The combination of the Poisson timing model with a relatively low-dimensional 

parametric description of f(a,t) appears to produce good estimates from pooled CPS data. 

Estimated time trends match 1960-2000 vital statistics data well for all women, and 

produce good quantitative and qualitative descriptions of race-specific fertility trends. 

The model’s success at fitting known fertility patterns suggests that using the same 



procedures with other groups (groups not covered by vital statistics) will provide useful 

new fertility data.  

Our preliminary experiments with immigrant women are promising. We are able 

to produce comprehensive US fertility histories for several groups of interest, such as 

foreign-born and Mexican-born women. We are also able to assess the effects of those 

group’s fertility patterns on overall US fertility over time. The work reported in this paper 

is mainly exploratory, but it is encouraging. In the future we hope to refine our methods 

further, and to produce a more complete catalog of immigrant fertility histories. This 

includes fertility estimates for native-born women with immigrant parents, Asian-born 

women, and many other groups.  

We have concentrated on estimating the fertility of immigrants after arrival in the 

US, but the modeling approach that we have tested in this paper is quite general.  It could 

be used for estimating fertility in any subpopulation of moderate size that can be 

identified in the CPS.  
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Appendix A 

In this Appendix we briefly describe a version of the continuous-time, 

nonhomogeneous Poisson model that allows use of discrete, integer-valued age and time 

data. The main idea is to assume that fertility hazard functions are piecewise-constant, at 

levels corresponding to certain exact (a,t) combinations in the continuous model. 

Specifically, we assume that fertility hazards are constant within single-year period-

cohort cells, indexed as in the figure. For example [28,2000] refers to the period 

[1 Jul 1999, 30 Jun 2000], and to individuals who are in age range [28,29] at the end of 

that period. We assume that the fertility hazard is constant everywhere within this [a,t] 

cell, at a level given by f(a,t) from the continuous-time QS model. For the part of the 

likelihood calculations that involve undated births, we treat births in a cell [a,t] as if they 

all occur at exact age a and time t. This notation 

is sensible for data gathered in June surveys; the 

only awkwardness is that births occurring in 

the second half of a calendar year (e.g., Jul-Dec 

1999) belong to the cell for the next calendar 

year (e.g. 2000). 

In discrete notation (denoted by uppercase letters), the log likelihood of a history 

taken from a women in single-year age category AGE in June of calendar year Y with  

maternal birth ages A1…An is therefore 
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where ∆ represents the difference in cumulative hazards between An-1 and An : 
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Appendix B 

 Appendix Table B1 reports time series parameter estimates and standard errors 

for the subpopulations discussed in the text. High standard errors for individual 

coefficients are not especially worrisome, because the time series “independent 

variables” (t, t2, and the quadratic spline terms for R in Equation 3) are highly collinear. 

Bivariate correlations between the independent variables range from +.71 to +.98. Put 

another way, basis functions for the time series are not well designed for precise 

estimation of the separate coefficients. Our objective is to estimate the overall time 

trends, not the component parts. 



Table B1: Time Series Parameter Estimates  
        
Coefficient Estimates 
        
  ALL WNH BNH MEX OFB All FB
   
LEVEL [R] a 23.9 24.3 23.5 18.6 16.9 17.5
 b -7.0 -8.3 -4.3 -1.6 4.8 2.8
 c 0.7 1.3 -0.7 1.7 -4.1 -2.8
 d 1.0 0.1 3.1 -1.7 6.3 5.1
 e -1.2 -0.4 -3.1 -1.9 -4.0 -4.7
        
START 
[alpha] a 12.5 12.8 12.4 12.0 12.1 12.2
        
PEAK [P] a -0.25 -0.24 0.20 0.28 -0.43 -0.37
 b 0.09 0.04 0.40 -0.39 -0.19 -0.15
 c -0.00 -0.01 -0.09 0.08 0.04 0.05
        
HALF [H] a 0.71 0.81 -0.60 0.34 0.68 0.70
 b 0.05 0.12 0.39 -0.00 0.40 0.23
 c -0.05 -0.06 -0.03 -0.00 -0.14 -0.10
        
Approximate Standard Errors 
        
LEVEL [R] a 4.7 5.9 5.8 8.0 5.7 4.9
 b 9.2 11.6 11.4 17.8 11.8 10.4 
 c 4.4 5.5 5.5 9.1 5.9 5.2
 d 5.1 6.5 6.6 11.3 7.1 6.3
 e 2.1 2.9 3.5 6.2 3.3 3.0
        
START 
[alpha] a 0.1 0.1 0.1 0.5 0.4 0.3
        
PEAK [P] a 0.19 0.23 0.26 0.57 0.38 0.30 
 b 0.19 0.26 0.25 0.48 0.38 0.28 
 c 0.04 0.07 0.05 0.10 0.09 0.06 
        
HALF [H] a 0.46 0.52 0.97 1.05 0.78 0.63 
 b 0.43 0.51 0.72 0.91 0.75 0.59 
 c 0.09 0.11 0.13 0.18 0.17 0.13 
    
    
Notes: 

(1) Time variable t is scaled such that t=(year-1958)/10 
(2) Approximate standard errors from SAS Proc NLP are based on 

second derivatives evaluated at the final coefficient estimates. 
(3) ALL=all women, WNH=White Non-Hispanic, BNH=Black Non-

Hispanic, MEX=Mexican-born, OFB=Other foreign-born, All FB= 
all foreign-born 

 


