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ABSTRACT 

 Much progress has been made on the development of statistical methods for network 

analysis in the past ten years, building on the general class of exponential random graph (ERG) 

network models first introduced by Holland and Leinhardt (1981).  Recent examples include 

“p*” models (Wasserman and Pattison, 1996), and actor-oriented models (Snijders, 2001).  For 

empirical application, ERG models currently require the equivalent of a network census: data on 

all dyads within the network.  They can not be applied to sampled network data, the type 

increasingly collected in local (egocentric) network sample surveys.  Conditional loglinear 

models have been adapted for analyzing such local network data (Marsden, 1981; Morris 1993).  

We show that these conditional loglinear models are related to the ERG model, though, 

somewhat surprisingly, not via the a priori blockmodels .  Under certain conditions the two 

models are related via Bayes’ rule.  They do not yield equivalent predicted values except when 

fully saturated, but in practice, the differences are unlikely to be large.  The alternate 

conditioning in the two models sheds light on the relationship between local and complete 

network data, and the role that models can play in bridging the gap between them. 
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1.  INTRODUCTION 

For many years, the methodology for model-based network analysis has developed along 

two distinct paths, one driven by a search for pragmatic approaches to network data collection, 

the other by developments in statistical theory for dependent data.  The pragmatic approach 

assumed that for many populations of interest to social scientists, a network census – data on 

every node and every link in the network of interest – would be impossible to implement.  These 

researchers sought methods that would enable the collection and analysis of sampled network 

data.  This led to the development of the egocentric or local network survey design:  a sample of 

the nodes (egos), with a name generator in the questionnaire to obtain a roster of their partners 

(alters), and name interpreters to collect information on these partners.  No attempt is made to 

identify or enroll the alters.  This approach makes local network data collection relatively cheap, 

easy to implement, and less intrusive than complete network data collection.  Early examples 

include the  Northern California Communities Study (Fischer 1982) and the core discussion 

partners network module used in the General Social Survey (Burt 1984).   

Analytic strategies for local network data take one of two forms.  The network 

information can be captured in node-specific summary measures, e.g. network size, 

heterogeneity, density, or mutuality, and the measures then treated as either response variables or 

covariates in a traditional linear model (e.g., Fischer 1982, Marsden 1987).  Alternatively, the 

relational data (the tie itself) may be modeled explicitly as a function of the nodal attributes 

(Marsden 1981; Burt 1990).  Typically, this type of analysis is conducted by forming a “mixing 

matrix” from the tie data – a contingency table of the ties that cross tabulates the attributes of the 

respondent (ego) by the attributes of their alter – and using a loglinear model (specifically, a 

generalized linear model with a log link and Poisson errors) to capture the degree of homophily 
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in the matrix (Pagnini and Morgan 1990; Mare 1991; Morris 1991; Raymo and Xie 2000).  The 

underlying approach grew naturally from earlier work on social mobility, in which the 

occupations of fathers and sons were compared (Goodman 1965).  In both applications, a 

sampled dyad (father-son, ego-alter) is the unit of analysis, the diagonal of the matrix has a 

special meaning, and a member of the pair may contribute multiple dyads to the sample.  The 

latter fact may induce some dependence among the observations, which can be handled by 

appropriate estimation methods (Yamaguchi 2003). In addition, it is necessary to have accurate 

estimates of the population subgroup sizes in order to distinguish between selection, activity 

level, and population composition effects (Morris 1993).  Overall, this local network approach 

has proven quite practical, and data have been collected on a wide range of topics (e.g., 

Granovetter 1973; Laumann and Knoke 1987; Wellman and Wortley 1990; Massey 1990; Burt 

1992; Morris 2004).   

An important feature of this approach is that the observed data, and therefore the models, 

represent the presence of a tie, but not the absence.  We therefore refer to these models as 

conditional loglinear models (CLLs). 

The more theoretical line of statistical network analysis has sought to develop a 

comprehensive framework for investigating the structure of a network, assuming complete 

network data are available. This approach has given rise to a sequence of models for the 

probability of a tie, from the p1 models first proposed in the late 1970s by Holland and Leinhardt, 

to the p* models developed during the 1990s by Wasserman and Pattison.  The key statistical 

advances underlying the development and application of these models has been the definition of 

the general class of exponential random graph models(ERG), and the development of estimation 

techniques that can be used with dependent data.  
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 The earliest modeling began by representing modest forms of dependence between the 

network ties:  reciprocity and transitivity.  Holland and Leinhardt (1970, 1981) made impressive 

progress exploring the effects of these forms of dependence on network structure given the 

limited computational methods available at the time.  Fienberg and Wasserman (1981) proposed 

additional terms to account for a priori blocks of network actors.  A priori block models collapse 

actors into attribute classes in much the same way as the mixing matrices for local network data, 

but keep track of  asymmetric and mutual ties as well as non-ties.  Frank and Strauss (1986) took 

the next logical step, proposing the Markov random graph as a model for local dyad dependence, 

and identifying it explicitly as a special case of the general ERG (Besag 1977).  The dependence 

is called Markovian because it extends only one step out from each dyad: two dyads are 

dependent if they share a node, and independent otherwise.  In the last few years a wide range of 

more general forms of dyadic dependence have been explored with these models (Wasserman 

and Pattison 1996, Pattison and Wasserman 1999, Robins et al. 1999; Snijders 2001; Hoff, 

Raftery and Handcock 2003).  The ERG class turns out to be very flexible, capable of 

representing such things as propensities for cycles, small world patterns and latent groups.  They 

provide, for the first time, statistical models for generalized spatial and temporal dependence in 

networks. 

Estimation of these models remains somewhat of a challenge.  Following the work of 

Besag (1975, 1977), Strauss and Ikeda (1990) proposed using maximum pseudo-likelihood 

(MPL).  This turned the problem into a simple logistic regression, making it possible to estimate 

these models using standard statistical software.  Virtually all applications of ERG models to 

date have used MPL.  While the MPL estimates are identical to the ML estimates when the dyads 

are independent, research suggest they may perform quite poorly under dyadic dependence 
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(Handcock 2003).  True ML estimation requires Markov-Chain Monte Carlo methods (Geyer 

and Thompson 1992, Gilks et al. 1996).  For various reasons, MCMC-based ML estimation 

continues to be difficult to implement (Handcock 2003), but progress is being made.  Soon, the 

main limitation will be the availability of data, and that is a big change.  

 To date, these two statistical modeling frameworks --  for complete and local network 

data -- have been developed in isolation.  Yet both are based on generalized linear models for 

exponential family distributions.  It would be quite useful if the results from the two types of 

analysis were directly comparable.  The relationships, however, are less direct than one might 

hope.  In the limited case of saturated tie-independent models, the two models are equivalent, 

and their fitted values are related via Bayes’ rule.  For non-saturated tie-independent models 

(more often of interest to social scientists), they are not equivalent, but their fitted values are 

likely to be very similar in practice. The conditions under which equivalence holds, and the 

reasons for similarity when it does not, help to illuminate the similarities and differences 

between the two models. This understanding allows us to interpret the body of previous work on 

local network partnership data within the newer, more flexible ERG framework, bridging the gap 

between local and complete network data and making the first steps towards a coherent statistical 

framework for modeling networks. 

 In this paper, we explicate the relationships between ERG models and conditional 

loglinear mixing models for network data.  We focus on the subclass of models that assume tie 

probabilities are independent, as this is the only subclass for which equivalence exists.  The 

central findings are illustrated using data on a network of school friendships from the National 

Longitudinal Study of Adolescent Health (Add Health). 
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2. TERMINOLOGY AND NOTATION 

 Social network data include a set of social entities, generally referred to as actors or 

nodes, and a set of relational measurements, also known as ties, links, arcs, lines, edges or 

partnerships, that exist between pairs of those actors on some social relation.  In the example we 

will be using below, actors are individual people and the relation is friendship.  The number of 

actors in the network will be denoted by n; the fixed set of network actors will be represented by 

N, where N = {1,2,3,…, n}.  One generally measures some attribute variables on the actors such 

as sex, ethnic origin, religious affiliation, geographic location, or age.  For simplicity, we shall 

assume for this paper that actors are coded according to a single nominal attribute that can take 

on K values; the results are easily generalizable to multiple and ordinal attributes.   We define the 

sets Ck for k = 1 to K, whose elements are all those nodes possessing the k
th

 value of the attribute.  

(The ordering of attribute values is arbitrary for nominal attributes).  The number of actors with 

attribute k is denoted nk, so that 
1

K

k

k

n n
=

=∑ . 

 Pairs of actors, whether or not they share a relational tie, are referred to as dyads.  The 

value of the tie between two actors is denoted by X; for specific actors i,j the random variable is 

denoted Xij. In the current discussion, we will assume that the tie relation is dichotomous, such 

that Xij = 1 if actors i and j share a tie and Xij = 0 if they do not. 

 Relations may be either directed or nondirected.  The relation is nondirected if a tie is 

either present or absent between each actor pair (Xij = Xji for all i,j pairs). A directed relation 

consists of measurements where the orientation of the ties between actors is meaningful.  In this 

case Xij need not equal Xji.  An example of a nondirected relationship would be “has sex with”; a 

directed relationship would be “sells drugs to”.  With local network data there is often a 

directionality implied by the study design (separate from the relationship itself), such that 
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respondents may be viewed as “sending” the relationship and their nominated partners as 

“receiving”.  We will use an example based on directed data here, but the approach is easily 

extended to undirected relationships.  Because of this generalizability we will use the word tie to 

describe a social relationship, since arc is generally restricted to directed relations, and edge or 

line to undirected relations, while tie remains more general (e.g. Wasserman and Faust 1994). 

 Figure 1 depicts three common forms of representation for network data, using a 

hypothetical directed network containing ten actors identified by location (urban/rural). The first 

representation is a graph, G, consisting of a set of nodes joined by lines or arcs.  The actors in N 

are the nodes in the graph.  Relational ties are represented graphically by connecting two nodes 

with a directed line, i→ j, indicating that actor i initiates a relationship towards, or chooses, actor 

j.  (Nondirected relationships are typically represented by a nondirected line, i—j.)    The 

network can also be represented in a two-dimensional array called a sociomatrix or adjacency 

matrix, denoted by X with elements Xij.  If self-relations are disallowed, the main diagonal of the 

sociomatrix is ignored.  For a nondirected relation one may assume that Xji =Xij for all (i,j) pairs, 

or ignore the lower triangle, restricting analysis to those Xij for which i < j.   

The third form of representation begins by collapsing the sociomatrix into a mixing 

matrix or contact matrix.  Rows and columns of the sociomatrix are aggregated within attribute 

classes, resulting in a smaller matrix in which cell entries tab indicate the total number of ties in a 

network among actor pairs with attributes a and b: 

 

   1ab ij

i a j b

t X
∈ ∈

=∑∑        [1] 
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We refer to the two attribute dimensions as A and B, with a,b = {1…k} as attribute classes;  since 

we assume a directed graph, dimensions A and B refer to the attribute classes of the sender (i) 

and receiver (j) of the relational tie, respectively.  The third subscript Y represents tie value y = 

{0,1}, equaling 1 in the contact matrix since these are counts of ties present.
1
 Information about 

the specific actors involved in the relationships is ignored in this matrix.  As with the 

sociomatrix, the contact matrix is square for a directed relationship and triangular for a 

nondirected one.  Square contact matrices may also be used for nondirected bipartite data, when 

the population can be divided into two classes with all partnerships between classes (e.g. a 

mixing matrix by race for heterosexual relationships, with the races for males and for females 

along the two margins).   

 The contact matrix ignores information about the absence of ties.  This information can 

be represented in another matrix, which we will call the “non-contact” matrix, in which y = 0.  

The three dimensions imply three sets of marginals; we follow the standard notation representing 

the margins with a dot symbol in the relevant subscript. The total number of ties is thus 

represented by t••1.  The marginal table tab• represents the total number of dyads between two 

actors with a given attribute combination.  In this marginal table A and B are always independent 

since tab•  represents the number of possible a,b dyads and is simply the product of na and nb for 

all a,b.
2
  This constraint turns out to have important implications both for the patterns of mixing 

that occur in practice and for the model. 

                                                 
1
 Since much of the literature on loglinear models for partnership data examines only the contact matrix, this third 

subscript is often left implied given it always equals 1. We include it here for clarity in comparing with later models. 
2
 This is true for all bipartite graphs (e.g. when modeling racial marriage patterns in heterosexuals), while for non-

bipartite graphs it is only exactly true in the case where actors are allowed to share a tie with themselves.  Otherwise, 

the number of homophilous dyads (those on the main diagonal of the contact matrix) in a group with n actors equals 

n
2
-n rather than n

2
. As n gets large, however, this difference becomes negligible.  Since modeling as if on-diagonal 

relationships were allowed simplifies the analysis considerably and since its effects in large populations are small, 

we will do so throughout the paper. 
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 In addition to the observed cell counts taby, we define the cell counts fit by a particular 

model as maby and the probability of an actor pair falling into a cell for a given model as πaby 

(=maby/m•••).  The literature on conditional loglinear models is often concerned with the 

probability of a tie falling into a given cell (i.e. mab1/m••1); we follow the tradition of this 

literature and denote this using two subscripts, πab (as distinct from πab1 = mab1/m•••).  

 

3. MODELING THE GRAPH 

The modeling approaches we compare are probabilistic, treating the Xij ties as random 

variables with realizations xij.  For dichotomous relations, the expected value of Xij is thus equal 

to P(Xij = 1).  A graph in which every potential partnership is independent and has an identical 

expected value is known as a Bernoulli graph.  A graph obeys conditional tie independence 

(CTI) if its tie probabilities do not depend on one another given the attributes of the nodes; this 

model is sometimes referred to as an independence model in the network literature, dropping the 

“conditional” since complete independence models are rarely of interest.  For directed 

relationships, dyadic independence (or more correctly, conditional dyadic independence) refers 

to a model in which tie probabilities are dependent on the value of the tie between the same two 

actors in the opposite direction, but not on other ties given the actor attributes
3
.  Otherwise, ties 

are said to be conditionally dependent, analogously shortened to dependent in common usage.  

We will retain the longer but more accurate terms here for clarity.  See Frank (1988) for a full 

discussion.   

 Nodes i and j are said to be homogeneous if they can be interchanged without affecting 

the probability of the graph. All nodes are homogeneous in a Bernoulli graph, while the 

                                                 
3
 Note that CTI and conditional dyadic independence are not identical; dyadic independence allows for a tie to 

depend on the state of the opposite tie between the same two actors, while CTI does not. 
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definition of CTI implies that nodes with the same attributes are homogeneous.  Homogeneity 

constraints allow for a more parsimonious representation, but they represent substantive 

hypotheses that should be considered part of the model.   

 For the remainder of the paper we assume CTI.  We will also assume that the order of the 

graph (i.e. the size of the population or the number of nodes) and its overall attribute composition 

are fixed, and we will leave these conditions out of our probability statements for simplicity.  In 

the discussion, we will review the ability of different models to relax these assumptions. 

3.1 Conditional loglinear models for locally sampled networks 

In the CLL context each tie is a Bernoulli trial, the probability of which depends only on the 

attributes of the two actors involved.  The cell counts tab1 are the sum of these trials; since we 

have assumed a fixed population and attribute composition, these cell counts have a Poisson (if 

the total number of ties t••1 is not fixed) or multinomial distribution (if it is).   

 The saturated CLL model can be expressed as: 

 

log A B AB

ab a b abπ λ λ λ λ= + + +         [2] 

 

where πab abm m= ••1 1 .  The first term represents a reference level for tie formation, the next two 

terms are main effects for the relative levels of tie formation for each group, and the last is an 

interaction effect for specific attribute pairings.  Interaction effects can be used to saturate the 

model, or they can be constrained to index groups of cells.  If the interaction effects are set to 

zero, one obtains the marginal effects model.  The remaining parameter values are adjusted 

accordingly, and the odds ratios (the cross product for any four cells that form a rectangle) for 

the fitted cell probabilities must satisfy: 
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1 1 2 2

1 2 2 1

1 1

1 2 1 2

1 1

1, , , ,
a b a b

a b a b

a a b b
π π

π π
= ∀        [3] 

 

This model fits the margins perfectly, but not necessarily the individual cell values. 

 Between the marginal and saturated models lie a range of non-saturated interaction 

models, which involve grouping cells into categories representing layers of a given effect.
4
 A 

simple one-parameter non-saturated interaction model is uniform homophily, which 

distinguishes between on- and off-diagonal cells.  The parameter measures the general strength 

of assortative mixing, and this model can be tested for goodness-of-fit.   One can also specify 

differential homophily factors for each diagonal cell (the “quasi-independence” model), linear or 

non-parametric distance off the diagonal for mixing by ordinal factors like age (the “diagonals 

parameter” model), and single-cell interaction terms (cf. Goodman 1984 and Morris 1991 for 

examples).  Non-saturated interaction parameters can be thought of as a generalized marginal 

term, in the sense that the cells sharing a level of the interaction term will have their sum fit 

when the term is in the model.  The interaction term levels Iab  can be represented as a model 

matrix (analogous to a design matrix from experimental studies), which helps to clarify their 

relationship to standard marginal models. For example, Table 1 contains the model matrix for a 

uniform homophily parameter with first level constraints in a four-value attribute, along with the 

model matrices for the marginal effects parameters.  Together these would yield the model: 

  

                                                 
4  With the exception of Goodman’s work, there is comparatively little statistical literature on 

non-saturated interaction models, despite widespread use of such models in the social sciences.   
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,

,

,

,
log

0,

HOM HOM

a bA B HOM

ab a b a b HOM

a b

a b

a b

λ λ
π λ λ λ λ

λ

 = =
= + + + 

= ≠        [4] 

 

 The two most common identification constraints are symmetric (or ANOVA) constraints, 

and first-level constraints.  The latter set the first level or category effects for each variable and 

their interactions equal to zero, thus acting as a baseline for interpretation of the parameters 

associated with the remaining categories (Agresti 2002).  

 If the dependence induced by actors contributing multiple partnerships to the data is 

ignorable, the model can be fit using a generalized linear model with a log link and Poisson 

errors.  Otherwise, the model can be fit using generalized estimating equations (GEE, Liang and 

Zeger 1986, Yamaguchi 2003). Under the assumption of tie-independence, parameter values for 

the fully saturated model can be stated as a function of the fitted cell probabilities: 

 

111

11 111

1 1 111

1 111

11 1 1

log( )

log( / )

log( / )

log

A

a a

B

b b

AB ab
ab

a b

λ π

λ π π

λ π π

π π
λ

π π

=

=

=

 
=  

 

       [5] 

 

  A shorthand bracket notation is often used to identify the model terms: a single variable 

in brackets indicates that all the levels of that variable are included in model, two or more 

variables in brackets implies a full set of interaction terms for those variables, as well as all 

lower-order terms.  The model in Equation [2] would be abbreviated as [AB], since this signifies 

a full set of AB interaction terms as well as marginal A terms and B terms.  



RANDOM GRAPHS AND LOGLINEAR MODELS 

14 

To compare the CLLs to ERG models below, it is helpful to consider the unconditional 

form of this loglinear model (ULL).  The ULL does not condition on the presence of a tie, 

instead it considers all dyads and treats the presence or absence of a tie as a third dimension with 

two levels (Y={0,1}).  The saturated ULL [ABY] is represented as: 

 

log A B Y AB AY BY ABY

aby a b y ab ay by abyπ γ γ γ γ γ γ γ γ= + + + + + + +        [6] 

 

The ULL class has marginal effects models and non-saturated interaction models analogous to 

the CLLs, as well as the same methods for fitting parameters.  The ULLs are similar to the a 

priori block models introduced by Fienberg and Wasserman (1981), but they are not the same.  

We consider this relationship in more depth below. 

 

3.2 Random Graph Models for Complete Networks 

 Exponential random graph (ERG) models with CTI reverse the conditioning of CLL, 

modeling the probability that actors share a tie given their attributes.  ERG models use both the 

tie matrix and the non-tie matrix, treating the tie dimension as an outcome variable and modeling 

the log-odds that it is present.  Population size and attribute composition are exogenously given 

in this model so the total number of dyads of each attribute combination (tab• for all a,b) is fixed.   

 The ERG model represents the probability function of the random graph G, defined by 

the sociomatrix X, as a linear combination of network statistics: 

 

{ }1( )  exp ( )P c θ− ′= =X x z x        [7] 
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(Besag 1974).  The vector z(x) represents a set of network configurations, while the θ parameters 

represent the unknown weights of the linear function of network properties.   The normalizing 

constant c is needed to ensure a proper probability distribution.  Any dyad-based measure from 

the network may be included in z(x), although typically sums or sums of products of Xij are 

used.
5
   

 This formulation is very general, and includes many network models proposed in the 

literature as special cases.  The earliest of these, the p1 models of Holland & Leinhardt (1981) 

included a θ parameter for overall partnership formation, actor-specific marginal parameters for 

each actor’s expansiveness (number of ties they send) and attractiveness (number of ties they 

receive) as well as a parameter for mutuality (the tendency for a tie from actor i to j to be 

reciprocated as a tie from j to i).  Some of the other models have already been noted above. 

 One of these deserves closer attention, because it is easy to confuse with the ULL model.  

Fienberg & Wasserman’s (1981) a priori block model introduces exogenous attributes into the p1 

model by collapsing across individual indices into blocks defined by the attribute levels of each 

node.  Within the cells defined by these blocks,  the counts of the four paired tie values within 

dyads (0,0; 0,1; 1,0; 1,1) become the focus of analysis.  Iacobucci (1994, pp. 605-674) provides a 

detailed review of the subsequent application of these models.   In contrast to the ULLs above, a 

priori blockmodels preserve the counts of directed asymmetric and mutual ties within and 

between blocks.  Because the counting strategy is different the a priori blockmodel parameters 

are not comparable to either the CLL or ULL model parameters.  The method of estimation is 

similar, however, since the model form is loglinear.  

                                                 
5
 Examples include nodal degrees, the number of within-group ties (analogous to uniform homophily), or the 

number of transitive triads (Xij = Xjk = Xki = 1).   
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 The only subclass of ERG models for which direct comparison can be made to the CLL 

specifications is CTI models.  These models can have parameters for exogeneous attributes, but 

not for mutuality or any form of dyadic dependence.  The saturated CTI model with homogeneity 

constraints is thus: 

 

( ) 1

1 1 1 1

X x exp
K K K K

A A B B AB AB

a a b b ab ab

a b a b

P c z z z zθ θ θ θ−

= = = =

 
= = + + + 

 
∑ ∑ ∑∑        [8] 

 

where z = the total number of ties in the network, A

az  = the number of ties initiated by actors in 

attribute class Ca, 
B

bz  = the number of ties received by actors in attribute class Cb, and AB

abz  = the 

number of ties initiated by actors in Ca and received by actors in  Cb . The θ, A

aθ , B

bθ and AB

abθ  are 

the coefficient on each term. Reframed in logit form for an individual tie, Eq. [8] reduces to: 

 

( )logit 1 , A B AB

ij a b a b abP X i C j C θ θ θ θ= ∈ ∈ = + + +         [9] 

 

Under CTI, unbiased estimates for the θ’s can be obtained from logistic regression with the 

observed tie values as the outcome variable and the change in network statistics when that tie 

value is toggled (the “change statistic” δij) as the predictors (Strauss and Ikeda 1990).  This is a 

generalized linear model with a logit link function and binomial errors.   

 This model can also be abbreviated as [AB], indicating that the right-hand side of the 

equation contains a similar set of terms as in the saturated CLL model.  The left-hand side of the 

equation is different, however.  A marginal effects model in this context also involves setting the 

AB interaction terms to 0.  This is commonly referred to as a model of independence for A and 
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B, but it is not the same as the independence model for the CLL. While the logit is now an 

additive function of row and column effects alone, A and B are not independent conditional on Y.  

The model instead implies: 

 

1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

1 1 0 0

1 1 0 0

a b a b a b a b

a b a b a b a b

π π π π

π π π π
=        [10] 

 

We draw out the implications below. 

 

3.3  Linking ERG models and conditional loglinear models 

 

 Conditional loglinear models predict ( , | 1)a b ijP i C j C X∈ ∈ = , while ERG models with 

CTI predict ( 1| , )ij a bP X i C j C= ∈ ∈ .  These are related by Bayes’ rule: 

 

( 1| , ) ( , )
( , | 1)

( 1)

ij a b a b

a b ij

ij

P X i C j C P i C j C
P i C j C X

P X

= ∈ ∈ ∈ ∈
∈ ∈ = =

=
       [11] 

 

The two conditional probabilities are linked by the two marginal probabilities for ties and 

attributes:  P(Xij = 1) is the fraction of all dyads in the network that have a tie, and  

( , )a bP i C j C∈ ∈  is the joint distribution of nodal attributes for all dyads.  Bayes’ rule thus 
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provides a simple explicit expression for transforming the predicted conditional probabilities 

from one model to that of the other.
6
   

Since both CLLs and ERG models are generalized linear models and Bayes’ rule 

provides a link between them, it would be natural to expect that models in one class would have 

an equivalent representation in the other, in the sense of a model yielding the same fitted cell 

probabilities.  However, due to the nature of the conditioning in each model, the only equivalent 

models are fully saturated models.  Non-saturated models from each class that appear 

comparable in terms of predictors in fact yield different outcomes.  Intuitively, this is because 

non-saturated ERG models use information from the non-tie layer to fit values in the tie layer, 

while  the CLL ignores information in the non-tie layer. 

 The ULL provides an explicit bridge for comparing CTI models in the ERGM and CLL 

frameworks.  All ERG models with CTI correspond to a 3-way ULL that contains the following 

terms and no other (Agresti 2002, p. 332) 

 

� a full set of AB interaction terms; 

� a Y marginal term; 

� every term in the ERG model; 

� every term in the ERG model crossed by Y. 

 

                                                 
6
 The distinction in conditioning is similar to those observed in a series of papers by Robins, Pattison, and Elliott 

(2001a, 2001b) that distinguish between social selection and social influence.   A social selection model assumes 

that individuals select partners based on attributes, analogous to the process underlying the CTI-based ERGMs. 

Social influence models assume that network structure can influence individual characteristics such as beliefs.  The 

probability of the attribute is conditional on the tie, as with the CLL.  A major difference lies in the fact that most of 

the literature using CLLs for mixing matrices, although modeling the probability of the attribute conditional on the 

tie, do not actually purport a causal link from tie to attribute but rather leave the direction of causality unspecified. 
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The AB interaction terms in the ULL ensure that the cells in the tab• marginal matrix are fit 

exactly.  These establish the population size, marginal attribute composition, and the numbers of 

dyads (not ties) among attribute groups.  Any equivalent ULL must have this [AB] term in the 

model, because population size and composition are exogenous to the ERG model.   

 Each CLL corresponds to a ULL containing the following terms: 

 

� a Y marginal term; 

� every term in the CLL model; 

� every term in the CLL model crossed by Y. 

 

Here the Y term sets the number of ties, so that m••1 can be fit exactly to m••1 in the ULL model. 

Each of the terms crossed by Y allows the CLL terms to be represented in the ULL tie layer 

independently of the non-tie layer.  That independence means that the fitted cell probabilities in 

the ULL (mab1/m•••) can be divided by the probability of a tie (m••1/m•••) fit by the Y term to yield 

the CLL cell probabilities (mab1/m••1). 

 Table 2 lays out the set of equivalencies among ERG models, ULLs, and CLLs.  We use 

the symbol UAB as a general symbol representing any set of non-saturated interaction terms 

between a and b.  Note that non-saturated ERG models have no corresponding CLL.  This 

follows deductively from the two sets of equivalence rules above.
7
     

 To make these differences clearer, we highlight the most familiar model -- marginal 

effects -- in the two frameworks.  Table 2 makes explicit how these differ.  While this is the 

model that we commonly think of as implying that A and B are independent, independence 

                                                 
7
 Imagine that there exists some ERG model with an equivalent CLL.  The ULL that is equivalent to this ERGM 

must contain an [AB] interaction term.  If the ULL contains [AB] then its CLL equivalent must also contain [AB].  

If the CLL contains [AB] then the ULL must contain [ABY], which means it is fully saturated.   
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clearly means different things in the two models.  For CLL, it means that A and B are 

independent conditional on Y.   For ERG models, independence means "no 3-way association"; 

all three variables are pairwise dependent, but each pair is conditionally independent given the 

third.  This does not mean that A and B are independent in either layer of Y; instead, the pattern 

of dependence is the same in each layer.  The difference is also evident when comparing the 

fitting constraints, Eq. [3] for the CLL, and Eq. [10] for the ERG model. 

  The model of “no 3-way association” in the loglinear setting is one of the more difficult 

to interpret in practice, yet it corresponds to the basic marginal effects ERG model.  There is no 

simpler definition in the ERG context because of the implicit constraint that A and B are 

independent in the marginal matrix of all dyads, mab•.  Since the tie and non-tie matrices must 

sum to this marginal matrix, the cell values in one layer determine the other when the totals are 

fixed.  A and B can only exhibit conditional independence in both layers under a narrow range of 

conditions: if either the sender or the receiver attribute subgroups are homogeneous with respect 

to tie formation.  (When both groups are, or one group is and ties are undirected, this degenerates 

into the Bernoulli model).   In essence, the additional implicit constraint mab• creates an inverse 

form of Simpson's paradox; two attributes are independent in the marginal table, but when 

stratified by a third variable (here, tie value), they are not independent in each stratum.      

 In practice, however, the fitted values from the two marginal effects models are likely to 

be similar.  Social networks for populations of reasonable size are generally quite sparse, because 

the number of ties in a population generally scales roughly with the population size, while the 

number of dyads varies with the square of population size.  If almost all dyads have Y = 0, then 

we can assume that in any sparse dataset tab0  ≅ tab• for all a,b.  Thus  
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1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

0 0

0 0

1
a b a b a b a b

a b a b a b a b

t t t t

t t t t
≈ ≈� �

� �

.       [12] 

 

This means the right hand side of Eq. [10] is approximately equal to 1 for sparse matrices, 

reducing it to Eq. [3], implying that the two models will yield approximately equal results.  

Bayes’ rule can be used to transform the fitted cell probabilities from one model to the other to 

determine the magnitude of the difference.  In our experience, sparse matrices of at least a few 

hundred people yield marginal models in which cell counts differ by at most a tenth of a 

partnership.  For non-sparse matrices from small settings such as an office or classroom, the 

differences will be small as long as the sizes and activity levels of the different attribute classes 

are roughly equal.  This latter set of conditions is seen in the example below. 

 

4. EXAMPLE: THE ADD HEALTH STUDY 

 We use the friendship nomination data from the first wave of the National Longitudinal 

Study of Adolescent Health (Add Health) to demonstrate the results above.  Add Health is a 

nationally representative study of students in grades 7 through 12, and the first wave was 

conducted in 1994-1995.  The study was school-based, and students were provided with a roster 

of all students in the school and asked to select up to five close male friends and five close 

female friends.  Complete details of this and subsequent waves of the study can be found in 

Resnick et al. (1997) and Udry and Bearman (1998) and at 

http://www.cpc.unc.edu/projects/addhealth.   

 We use friendship data from one school comprising 71 students divided into six grades 

(with 15, 13, 16, 10, 13 and 4 students in grades 7 through 12, respectively).    The ties are 

directional since it is possible person A could name B as a friend without B nominating A.  The 
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limit on nominations means that the data are not complete, but we will assume for convenience 

that a lack of nomination in these data implies the absence of a friendship.   

 Figure 2 provides a graph of the data, while Table 3 shows the corresponding contact and 

non-contact matrices.  We begin by fitting a CLL and an ERG model with main effects only and 

the ULL that corresponds to each.  A quick glance at Figure 2 makes it clear that there is a strong 

preference for students of all grades to nominate friends in their own grade; we thus also run the 

CLL and ERG models for main effects with uniform homophily.  In each case, first-level 

identification constraints were used, and both were fit using the glm macro in R (Ihaka and 

Gentleman 1996).   

 The parameter estimates for the marginal effects models are shown in Table 4.  These 

allow for a comparison of the CLL and ERG model to their respective ULL parameterizations.  

In the case of the ERG model, the ULL parameter values in the first column of Table 4 are those 

that fit the tab•  cells exactly; there are no corresponding parameters in the ERG model since the 

tab• values were conditioned upon in the construction of the model.   The ULL parameters in the 

second column (those that represent the patterns in the Y = 1 layer) have values equal to the ERG 

model parameters.  Note that all 25 ([a-1]*[b-1s]) of the AB interaction terms in the ULL list are 

very close to 0 and are described by summary statistics rather than enumerated; they are 

modeling the log of the ratio of odds ratios between the tie and non-tie matrix, and those ratios 

are all very close to 1 for the reason explained in the previous section (see Eq. [12]).  Table 5 

emphasizes their negligible effect on both fitted cell probabilities and values by providing 

summary counts of the order of magnitude in difference invoked by their inclusion or exclusion 

in model fit. 
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 For the CLL marginal effects model, the corresponding ULL model does not have any 

[AB] interaction parameters.  There are exactly twice as many parameters in the ULL 

parameterization as in the CLL model, since the ULL model is fitting both layers; the first 

column of the ULL values fits the appropriate independence model in the non-tie layer, while the 

second column then fits independence in the tie layer.  With the first-level parameterization, each 

CLL parameter equals the sum of the two parameters in the ULL in the same row in Table 4.  

 Note the strong similarity between the ULL parameters for the two models, despite the 

fact that they are not identical.  We can also see the similarity between the models by applying 

Bayes’ rule to calculate the fitted probabilities of having a nodal attribute composition given the 

presence of a tie.  Take the example of a 7
th

 grade sender and 8
th

 grade receiver; under the 

marginal effects ERG model, Eq. [11] would yield: 

 

( )

( )
( )

7 8

exp 2.895 0.102 5 190
*

1 exp 2.895 0.102 305 4736
, | 1 0.0304

305

305 4736

ijP i C j C X

− − + 
 + − − + 

∈ ∈ = = =
 
 + 

             [13] 

 

 

The marginal effects CLL model gives this value directly as: 

 

 

 

( ) ( )
7 8

exp 2.468 0.240
, | 1 0.0304

305
ijP i C j C X

−
∈ ∈ = = =                              [14] 

 

 

Other combinations are compared in Table 6; despite being different models, the fitted cell 

probabilities obtained from the two are generally equal down to the fourth decimal place. 
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 Figure 2 made clear the strong tendency for ties to be homophilous by grade.  A 

likelihood ratio test confirms that adding a single uniform homophily parameter significantly 

improves the model fit in either modeling framework.  Using the uniform homophily parameters 

accentuates the differenced between the fitted cell probabilities of the two frameworks, although 

the differences are still on the order of the third decimal place.  Thus, even for relatively small, 

dense social networks, the practical differences between the two modeling frameworks are not 

very large. 

5. DISCUSSION 

Conditional loglinear models and ERG models are both generalized linear models based on the 

exponential family that can be used to represent attribute mixing in networks, but they condition 

on different aspects of the data.  CLLs condition on the tie being present, and model the patterns 

in partner selection, while equivalent CTI ERG models condition on the attribute composition of 

the population, and model the distribution of ties and non-ties.  This helps to clarify how one 

might choose between these models (and data collection strategies) based on context.  For large 

populations in which people form ties with only a small fraction of possible partners, it seems 

reasonable to assume that the non-ties (or at least the great majority of them) are not explicitly 

chosen.  In this case, the CLLs would be a reasonable approach for analysis.  In small settings 

such as schools or offices or isolated populations, the patterns of non-ties (do not collaborate, do 

not get along, can not marry) may be as intentionally chosen as the ties.  This is also the situation 

in which complete data are more feasible to collect, and here ERG models may be a better 

choice.  Whatever the relative theoretical merits of each model, however, the similarity of the 

fitted values in practice suggests that there is little to be gained by selecting the model based on 

the form of conditioning.  That leaves one free to choose on other grounds.   
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 One of the other grounds to consider is the flexibility of the modeling framework.  In this 

paper, attention has been limited to the restricted set of “comparable” models, so that the 

similarities and differences between the frameworks can be clearly identified.  The set of 

comparable models share two assumptions: fixed population attribute composition and dyadic 

(tie) independence.  In practical applications these assumptions may be a severe handicap.  For 

example, when network models are used in a dynamic context, such as modeling the 

transmission of HIV through a network of partnerships, it is often desirable to allow for 

population composition changes (for example, to allow for group specific infection and mortality 

rates).  The CLLs make it relatively easy to relax fixed attribute composition, and replace it with 

the much weaker assumption that population sizes and preferences are separable.  This is 

because the CLL mixing parameters are specified in terms of odds ratios, which allows the 

margins to change independently of selection patterns, making it straightforward to integrate 

exogenously changing population sizes into a dynamically changing mixing matrix (Morris, 

1991).  Currently, it is not clear how this would be accomplished in the ERG modeling 

framework.   

On the other hand, it is often important to be able to relax the dyadic independence 

assumption to be able to model such things as dependence among dyads.  A good example (in 

the same HIV transmission context) is the rule of serial monogamy in sexual partnerships, which 

imposes a very strong form of dyadic dependence:  the probability of a link between two nodes is 

zero if either node is already linked to another.  Here ERG models have the clear advantage, as 

they can model forms of dyadic dependence explicitly (Wasserman and Pattison, 1996; Pattison 

and Wasserman, 1999).  Because non-ties cannot be modeled explicitly in the CLL, there is no 

way to represent this form of dependence. 
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 The ability to represent dyadic dependence is the reason that ERG models have attracted 

so much interest in contemporary network analysis.  Dependence among social ties has always 

been the theoretical heart of network analysis – from balance theory and cognitive networks to 

kinship structure and role algebras.  While most applications of ERG models have focused on 

locally connected subsets of the graph (Markov graphs), ERG models can incorporate a much 

wider range of interdependence, including global network properties such as connectivity, 

centrality and distance.  Using Markov Chain Monte Carlo algorithms for estimation, ERG 

models also place the problem of inference for conditional dependence on a firm statistical 

footing.  This has important practical implications, as it enables one to test whether dyadic 

independence, or limited forms of dependence, provide a reasonable fit to the data in particular 

contexts.  When the answer to this question is yes, network structure may still be present (as in 

attribute mixing), but the data requirements for estimating such structural parameters are much 

simpler.   

The difference between these two statistical frameworks for modeling networks currently 

poses a difficult choice for network analysts:  flexibility to model population changes while 

constrained to dyadic independence, vs. flexibility to model dependence constrained by static 

population composition.  This would be a sorry state of affairs if it were not such an 

improvement over the recent past.  Statistical models for networks have been long in coming, 

and the choice now afforded, even if not ideal, is a temporary inconvenience.  In short order, the 

constraints of the current frameworks will be eclipsed by developments in both network 

sampling and modeling.  Much of the impetus for current work is coming from the need for 

network models in applied settings.  Especially in the field of HIV/AIDS prevention, the value of 

a network perspective is tremendous, providing a unique and powerful perspective on the 
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dynamics of transmission and the opportunities for prevention.  The spillover effects of resources 

devoted to this aim are making it possible for basic network methods to develop at a remarkable 

pace.  These include not only the local and complete data approaches already discussed, but 

various “partial network” sampling schemes, including various forms of snowball samples, link 

tracing, and adaptive sampling (Frank and Snijders 1994, Thompson and Frank 2000); such 

methods result in complex modeling issues but also hold great promise.   

The theoretical perspective afforded by network analysis has been regarded by some as 

the heart of a true social theory – because it makes the relation, and the positions defined by 

relations, the unit of analysis.  While we are still some years from having a viable statistical 

framework that can replace the linear regression model, it is now a matter of time.  The links 

with the growing literature in evolutionary game theory and the general study of agent-based 

interacting dynamic systems (Bowles, 2003; Gintis, 2000; Macy, 2002; Majeski, 1999; Padgett, 

1993; Parker, 2003; Watts, 2003), suggest that the social sciences are converging in a remarkable 

way to the empirical study of social relations and interaction. 

 

 



RANDOM GRAPHS AND LOGLINEAR MODELS 

28 

Author Note 

Laura M. Koehly, Department of Psychology, Texas A&M University; Steven M. 

Goodreau, Center for AIDS and STD and Center for Statistics and the Social Sciences, 

University of Washington; Martina Morris, Department of Sociology, Center for Statistics and 

the Social Sciences, University of Washington.  The first two authors contributed equally to the 

intellectual content of this manuscript. 

This research was supported by NIH grants HD34957 and DA12831.  Portions of this 

paper were presented at the 2000 IUSSP Conference on Partnership Networks and the Spread of 

HIV and Other Infections, Chiang Mai, Thailand;  the 2000 Annual Meeting of the International 

Network for Social Network Analysis, Vancouver, BC; and the 2001 annual meeting of the 

methodology section of the American Sociological Association, Minneapolis, MN. 

 Correspondence concerning this article should be addressed to Laura M. Koehly, 

Department of Psychology, Texas A&M University, College Station, TX 77843-4235.  e-mail: 

koehlyl@tamu.edu. 

 



R
A

N
D

O
M

 G
R

A
P

H
S

 A
N

D
 L

O
G

L
IN

E
A

R
 M

O
D

E
L

S
 

2
9
 

F
IG

U
R

E
 1

: 
R

ep
re

se
n
ta

ti
o
n

s 
o
f 

n
et

w
o
rk

 d
at

a 

    
G

ra
p

h
  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

    

R
1

  

R
2

 

R
3

 

R
4

 

U
5

 

U
2

 
U

1
 

U
6

 

U
4

 

U
3

 

  
  

 
              

S
o
ci

o
m

a
tr

ix
 

   

 
R

1
 

R
2
 

R
3
 

R
4
 
U

1
 
U

2
 
U

3
 
U

4
 
U

5
 
U

6
 

R
1
 

- 
0
 

0
 

1
 

0
 

1
 

0
 

0
 

0
 

0
 

R
2
 

1
 

- 
1
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

R
3
 

1
 

0
 

- 
0
 

0
 

0
 

0
 

0
 

0
 

0
 

R
4
 

1
 

1
 

0
 

- 
0
 

0
 

0
 

0
 

0
 

0
 

U
1

 
1
 

1
 

0
 

0
 

- 
0
 

1
 

0
 

0
 

0
 

U
2

 
0
 

0
 

0
 

0
 

0
 

- 
0

 
1
 

0
 

0
 

U
3

 
0
 

0
 

0
 

0
 

0
 

0
 

- 
0
 

0
 

0
 

U
4

 
0
 

0
 

0
 

0
 

0
 

1
 

0
 

- 
1

 
0
 

U
5

 
0
 

0
 

0
 

0
 

1
 

1
 

0
 

1
 

- 
0
 

U
6

 
0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

1
 

- 

 

C
o
n
ta

ct
 m

a
tr

ix
 a

n
d
 n

o
n
-

co
n
ta

ct
 m

a
tr

ix
 

  Y
=

1
 (

ti
e)

 

 

 
R

 
U

 
t i

•1
 

R
 

6
 

1
 

7
 

U
 

2
 

8
 

1
0
 

t •
j1

 
8
 

9
 

1
7
 

  Y
=

0
 (

n
o
 t

ie
) 

 

 
R

 
U

 
t i

•0
 

R
 

6
 

2
3
 

2
9
 

U
 

2
2

 
2

2
 

4
4
 

t •
j0

 
2
8
 

4
5
 

7
3
 

  



R
A

N
D

O
M

 G
R

A
P

H
S

 A
N

D
 L

O
G

L
IN

E
A

R
 M

O
D

E
L

S
 

3
0
 

F
IG

U
R

E
 2

: 
A

d
d
 H

ea
lt

h
 F

ri
en

d
sh

ip
 D

at
a,

 b
y
 g

ra
d

e 

  

 
   

G
ra

d
e 

7
 

 
G

ra
d

e 
8
 

 
G

ra
d

e 
9
 

 
G

ra
d

e 
1
0
 

 
G

ra
d

e 
1
1
 

 
G

ra
d

e 
1
2
 

  



RANDOM GRAPHS AND LOGLINEAR MODELS 

31 

TABLE 1:  Model matrices, 4x4 table 

 

 

Model matrix for uniform homophily 

 

 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
  
 

 

 

 

Implicit model matrices for marginal effects with first-level constraints 

 

     A=2      A=3      A=4 

 
0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

 
 
 
 
  
 

 
0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

 
 
 
 
  
 

 
0 0 0 0

0 0 0 0
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1 1 1 1

 
 
 
 
  
 

  

 

     B=2      B=3      B=4 

 
0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

 
 
 
 
  
 

 
0 0 1 0
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0 0 1 0

 
 
 
 
  
 

 
0 0 0 1

0 0 0 1

0 0 0 1
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TABLE 3:  Add Health: Reported friendships and imputed non-friendships by grade of 

nominator and nominee for one school 

 

 

Friendships 
 

 Grade of nominee 

 7 8 9 10 11 12 

 7 52 5 * * * * 59

 8 8 33 9 * * * 52

Grade 9 * 10 70 * 4 * 86

Of 10 * * 3 30 10 * 43

Nominator 11 * * * 7 43 4 57

 12 * * * * * 5 8

 61 48 86 39 60 11 305

 

 

Non-friendships 
 

 Grade of nominee 

 7 8 9 10 11 12 

 7 173 190 239 149 195 60 1006

 8 187 136 199 130 168 51 871

Grade 9 240 198 186 159 204 63 1050

Of 10 150 130 157 70 120 40 667

Nominator 11 194 169 206 123 126 48 866

 12 60 52 63 40 50 11 276

 

 

1004 875 1050 671 863 273 4736

* cell contains fewer than 3 observations 
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 TABLE 5: Order of magnitude differences in cell counts for ULL marginal effects model fits 

with and without AB interaction parameters:   

 

order of mag. Y=1 layer Y=0 layer

10
-1

 - 10 
0

1 13

10
-2

 - 10
-1

6 11

10
-3

 - 10
-2

15 1

10
-4

 - 10
-3

3 -

Identical 11 11

total # cells 36 36  
 

(Note the first-level contraints parameterization always results in 11 values being identical in 

each layer for this model). 
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TABLE 6: Order of magnitude differences in the Y=1 layer for ERGM vs. CLL model fits:  

 

order of mag. marginal effects model uniform homophily model

cell prob. cell counts cell prob. cell counts

10
-1

 - 10 
0

- - - 7

10
-2

 - 10
-1

- 10 - 26

10
-3

 - 10
-2

- 22 - 2

10
-4

 - 10
-3

2 4 19 1

10
-5

 - 10
-4

22 - 16 -

10
-6

 - 10
-5

12 - 1 -

total # cells 36 36 36 36  
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