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Abstract 

 
Demographers often use logit and probit models when analyzing binary events. 

Many researchers, however, misinterpret how including or excluding additional 
regressors, heterogeneity corrections, and multi-level factors impact the interpretation of 
the estimated parameters. Such misinterpretations can result in incorrect inferences about 
the importance of incorporating additional features into statistical models. 

 
In this paper we derive how estimated coefficients in probit and logit models must 

change when one includes or excludes explanatory “variables” that are independent of the 
other explanatory variables in the model. We demonstrate how coefficient estimates 
change when one controls or fails to control for such independent factors.  Reports of 
“biases” in such models can often be attributed to the fact that estimates in nonlinear 
models depend crucially on the inclusion or exclusion of factors that are independent of 
those already included in the statistical model. Unlike linear regression, the set of 
conditioning variables plays an important role.    
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I. Introduction  
 

Most researchers learned how to interpret regression coefficients by using the 
classical linear ordinary least square model.  In that model, and under the standard 
assumption that all regressors used in the estimation are independent of the error term, 
each estimated regression coefficient measures the change in the expected value of the 
dependent variable due to a change in the regressor, holding constant all of the other 
observed regressors in the model.  If new explanatory variables (information) becomes 
available, and these variables are independent of the original set of regressors, this 
interpretation of the coefficients as derivatives of the conditional expected value does not 
change when the new information has separable, additive effects. 
  
 To be precise, suppose the original regression model is given by iii xy εβ += ' . 
As in the classic regression model, assume 0)|( =xE ε  and ε  and x are independent. In 
this instance the coefficient vector β equals xxyE ∂∂ )|( . Next, suppose a new set of 
variables z becomes available to the researcher. These variables are independent of the 
original set of explanatory variables. If these additional variables were incorporated into 
the regression model, as in iiii zxy ηγα ++= '' , by following the same logic as above, 
the coefficient vector α equals xzxyE ∂∂ ),|( . In what follows, we assume that η and z 
are independent. None of our discussion of linear models depends crucially on this 
assumption, but it will be a useful simplifying assumption when we discuss nonlinear 
models. We also assume that all functions of interest are continuous and bounded. 

 
Since x and z are uncorrelated, and by the fact that inclusion of uncorrelated 

additional explanatory variables does not affect the estimates of the original variables, 
then xxyExzxyE ∂∂≡∂∂ )|(),|(  and so β≡ α. That is, the interpretation of the 
regression coefficient on the explanatory variables x does not depend on whether one 
includes or excludes the independent explanatory variables z. Of course if one was 
attempting to estimate the impact of x on y one would usually prefer to include z as 
explanatory variables, as long as z did have some explanatory power in predicting y. But 
this would be solely because it would be possible to obtain more accurate estimators of 
the effect of x in the sense of having smaller standard errors.  

 
In most nonlinear models, however, the inclusion or exclusion of additional 

explanatory variables can have a substantive impact on the interpretation of estimated 
impacts of the original regressors, even when these additional explanatory variables are 
independent of all the other regressors in the model.  In nonlinear models of this type, the 
estimates of derivatives of the expected value of outcomes depends crucially on what 
other variables are included in the regression model. This is little more than a statement 
of the fact that the expectation of a nonlinear function is seldom equal to the nonlinear 
function evaluated at the expectation of the explanatory variables.  

 
To see this, suppose that y depends on a general function of x, z, and η, i.e.,  

),,( iiii zxhy η=  
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This is just the nonlinear counterpart of the second regression model discussed above that 
included both x and z as explanatory variables. The expected value of y given x and z , 

which is the counterpart to ii zx '' γα +  above is  where 

Q(

)(),,(),( ηη dQzxhzxg iiii ∫
∞

∞−

=

η ) is the cumulative distribution function of the random variable iη  which, by 
independence, does not depend on x or z. In general g(x,z)  will be a non-linear function 
of both x and z. The derivative of the expected value of y given x and z is  

x
zxgzxd

x
zxyE

∂
∂

==
∂

∂ ),(),(),|(  . This derivative will usually depend on the values that x 

and z take; d(x,z) is a nonlinear function.   
 

Next, suppose that information on z is not available to the researcher. In this case 
one cannot hold constant the value of z when describing the impact of  x on y. Define the 

expected value of y given x as  )(),()( zdRzxgxf ii ∫
∞

∞−

=  where R(z) is the cumulative 

distribution function for z. By independence R(z) does not depend on x (or η), and we 
treat z as a random variable because it is unobserved, just as we treated  the unobserved η 
as a random variable. The function f(x) corresponds to the first linear regression model 
that includes only x as an explanatory variable. Let the derivative of this expected value 

be given by 
x
xfxc

x
xyE

∂
∂

==
∂

∂ )()()|( . This function c(x) is just an average of the d(x,z) 

functions across z’s when g(x,z) is smooth and differentiable.  
When comparing the impacts of x on y in nonlinear models with and without 

controlling for the impact of z, one is implicitly attempting to compare the function c(x) 
to the function d(x,z). Provided that both c(x) and d(x,z) are continuous and smooth and 
that z has continuous support, for every value of x there will always be at least one value 
of z, say z*(x) , that  makes the two derivative equals, i.e., c(x) equals d(x,z*(x) ).  The 
values of the functions c(x) and d(x,z) will differ only because one is implicitly choosing 
to compare the functions at a value of z different from z*. It is only when one chooses to 
condition on a particular value of z that c(x) might appear to be “biased.” That is, if one 
changes the conditioning (information) set by incorporating information about z, in 
nonlinear models the values of the functions c(x) and d(x,z) will usually differ. This 
reflects the value of new information, and should not be interpreted as a bias. c(x) will 
always, by definition, be an unbiased estimator of the derivative of the expected value of 
y given x. 
 

Logit and probit models are two commonly used nonlinear models that display 
sensitivity of the parameter estimates to the inclusion or exclusion of explanatory 
variables that are statistically independent of the other explanatory variables used in the 
estimation. Many researchers, however, have misinterpreted how including or excluding 
additional regressors, or including or excluding heterogeneity corrections, or including or 
excluding multi-level factors can impact the interpretation of the estimated parameters. 
Such misinterpretations have given rise to several incorrect inferences about the 
importance of incorporating additional features into statistical models. 
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In this paper we derive precisely how estimated coefficients in probit and logit 
models can change when one includes or excludes an explanatory variable that is 
independent of the other explanatory variables in the model. We use these results to 
demonstrate how one should expect coefficient estimates to change when one controls or 
fails to control for these independent factors. We apply the results from our investigations 
to reinterpret : (1)the importance of controlling for random effects in the context of 
multilevel binary outcome models (Rodriguez & Goldman, 1995, 2001); (2) the 
suitability of a test for heterogeneity as an endogeneity test in logit models by using a 
conditional logit model as presented in Greene(2001); and (3) the “biases” that appear to 
arise when one uses Heckman-Singer heterogeneity in discrete time hazard rate models 
(Melino and Baker, 2000). In each of these three instances, the perceptions of “biases” 
that researchers might uncover could often be attributed to the failure to recognize that 
estimated impacts in nonlinear models depend crucially on the inclusion or exclusion of 
factors that are independent of those already included in the statistical model.  
 
Section II: Probit models  
 
 In this section we derive how estimated coefficients and probability derivatives in 
probit models depend on the inclusion of a single explanatory variable that is statistically 
independent of another explanatory variable. This second explanatory variable can be 
used to help explain the probability of a discrete, binary event. In order for a probit model 
to be appropriate with both the inclusion and the exclusion of this potential explanatory 
variable, it is necessary for this additional explanatory variable to follow a normal 
distribution. If it followed some other distribution, then it would be impossible for the 
standard, linear index probit model to be appropriate in these two situations.  The general 
derivation of results for this discussion for the probit model is actually quite general, and 
in Appendix A a similar approach is used for evaluating the consequences of including or 
excluding an “additional explanatory variable” in logit models.  
 

Suppose the discrete model is of the form: 
 

⎩
⎨
⎧ ≥

=
otherwise 0

0I if 1 it
itd           (1) 

 
One knows that I  depends on a linear function of x1 . One also believes that x  may 
enter the equation of interest linearly. Specifically, the true model is: 

it 2

 
it2i21it10it +xx + = I εααα +   ,       (2)  

where itε , x , x  are independent of each other. We assume x ~ N(0, ) and thatit1 i2 i2
2
2xσ itε  

~ N(0,1). These assumptions ensure that a probit model is appropriate with and without 
the inclusion of x  in the model. The normalization of the variance of i2 itε  to 1 is 
arbitrary, because only the sign of the index function I  determines the outcome dit it ; the 
sign of this expression does not depend on whether the entire expression is divided by 
any positive constant so one can pick any normalization that is convenient.  
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Suppose there is no information on x  at hand. Given the above model, it is the 

case that x  is independent of 
i2

it1 itν =α 2 x +i2 ε it . This produces a ‘new’ probit model of 
the form: 

 
I =it β 0 + β 1  x +it1 itν          (3)  
 
Equations (2) and (3) are identical, except for the explicit inclusion of x in (2) and its 
implicit inclusion in (3). Since data is not observed for x , and since x  is independent 
of 

i2

i2 it1

itν , it seems that a probit model would be as appropriate for equation (3) where x is 
not observed as it is for equation (2) where only 

i2

ε it is unobserved. It is, however, 
important to recognize that probit estimation procedures contained in standard statistical 
packages almost always assume, arbitratily, that the error variance is 1.0. This is true by 
assumption for equation (2), but it cannot be the case for equation (3) where the error 
term itν  has variance .  12

2
2
2 +⋅ xσα

 
Standard statistical procedures would produce estimates of the impact of x  on 

the probability that d
it1

it =1 under the assumption that the error term in the index function 
(3) has variance 1 instead of . We can use this fact to help derive what a 
probit model applied to equation (3) would estimate in terms of the parameters defined in 
the context of equation (2).  

12
2

2
2 +⋅ xσα

 
 If one does not observe x2it , then all that can be learned from the data is how the 
probability of the discrete event dit  varies with changes in x1it . Using equation (2) and 
the fact that x2it is independent of x  and it1 itε , one can solve for this conditional 
probability in terms of a standard normal error term as would be imposed in a typical 
probit analysis. For simplicity we do not explicitly use the i and t subscripts.  
 
Formally: 
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∫
∗∗+

∞

=
110 2

-

z
2
1-

dz e
2
1xαα

π
            (4) 

 
where , is the variance of  the new composite error 12

2
2
2 +⋅= xb σα )+x( 22 εα . 

Note that z =
1

)+x(
2
2

2
2

22

+⋅

−

xσα

εα  is a normal random variable with mean 0 and variance 1. It is 

distributed N(0,1), and it is independent of x1 . The new parameters, denoted by the 
original symbols in equation (2) but with asterisks, are the original parameters in equation 

(2) divided by the standard deviation of the new composite error, i.e., jα∗=
b
jα

, j=1,2.  

Note that these transformed coefficients must be smaller than their counterparts in 
equation (2) whenever x2 is informative about d. 
 

The probability of the event d, only conditional on x1, is given by 
 

 Prob (d=1| x )= ,  1 )( 110 x∗∗ +Φ αα
 
where Φ (.) is standard normal cumulative distribution function. Almost all computer 
packages assume a variance one error term, so a probit analysis with x1 as the only 

explanatory variable would report estimates of =∗0α
b
0α

 and =∗1α b
1α  instead of 0α  and 

1α . Under the assumption that 00 =α , 11 =α , 22 =α , and var(x2) = var(ε ) = 1, the 
graph of this conditional probability as only a function of x1 is given by:  
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pr
ob

_x
1

x1
-5 0 5

0

.5

1

 
Figure 1. Prob (d=1| x ) against x1  1

 
This probability is clearly increasing in x1, but it would be informative to understand 
quantitatively how this probability changes with x1.  
 
 In a simple regression model, the estimates of the coefficients provide precisely 
this type of quantitative information. They are estimates of the derivative of the expected 
value of the continuous outcome with respect to a change in each explanatory variable. In 
nonlinear models like the probit model examined here, the estimated coefficients do not 
measure the derivatives of the expected value of the discrete outcome d given x, but they 
are related to the derivatives of this conditional expectation.   
 
 To report how changes in explanatory variables affect the expected value of the 
discrete outcome in the probit model, it is necessary to solve for the conditional expected 
value given the explanatory variables used in the estimation.  Fortunately, the conditional 
expected value of a dummy variable (taking on only values 0 and 1) is just the probability 
that the dummy variable equals 1 given the explanatory variables used in the analysis. To 
see this note that : 
 

).|1(Pr
)|1(Pr1)|0(Pr0)|(

1

111

xdob
xdobxdobxdE

==
=⋅+=⋅=

  

 
So, in the probit model a statistic that provides information analogous to what the 
regression coefficients measure in a linear ordinary least squares model is just how the 
probability of the event d=1 varies with the explanatory variables. To solve for this piece 
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of information, differentiate equation (4) with respect to the explanatory variable. This 
yields:  
  

2
110

110 2

)(
2
1-*

1

1

-

z
2
1-

1

1

e
2
1

x

dze
2
1 

x
)x|1(Pr

x

x

dob

∗∗

∗∗

+

+

∞

⋅=

∂

∂
=

∂
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αα

αα

π
α

π
 

 
)( 1101 x∗∗∗ +⋅= ααφα  . 

 
The equality on the second line follows from the first fundamental theorem of calculus, 
and φ (.) is the standard normal density. Since density functions are never negative, the 
sign of  does indicate the sign of the derivative. However, unlike the simple linear 
model, the magnitude of the derivative of the probability varies by the value of x

*
1α

1.  

Graphing this derivative, 
1

1

x
)x|1(Pr

∂
=∂ dob , against x  yields: 1

de
rx

1

x1
-5 0 5

0

.1

.2

.3

.4

Figure 2. 
1

1

x
)x|1(Pr

∂
=∂ dob  against x1 . 

Since each value of x1  implies a unique value of the Prob (d=1| x1 ), we can also graph 
the above derivative against the probability d=1 for each value of x1.  
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This yields: 
de

rx
1

prob_x1
0 .5 1

0

.1

.2

.3

.4

 

Figure 3. 
1

1

x
)x|1(Pr

∂
=∂ dob  against Prob (d=1| x1 ) 

 
If there is no information available about x2 , then Figures 2 and 3 provide all of the 
information that one can learn about how the event {d=1} is affected by changes in the 
value of x1.  Probit estimators that relate the dummy variable d to only the variable x1 
provide asymptotically unbiased and consistent estimators of the coefficients  and . 
These estimators will then yield consistent estimators of the derivatives of the probability 
that d=1 when there is no information available about x

*
0α *

1α

2 (and ε). 
  
Next, assume that information on x  becomes available for each observation. The 
researcher now can consider using the information on d, x

2

1 and x2 to carry out a probit 
estimation of equation (2) instead of equation (3) or equation (4). Following the same 
steps as above, one can solve for  
 
Prob (d=1| x , x )=1 2 (Φ 22110 xx + ααα + )  
 
and  
 

1

21

x
) x,x|1(Pr

∂
=∂ dob = (1 φα ⋅ 22110 xx + ααα + ).  

 
Note that in this instance the probability and probability derivatives correspond to the 
original parameters in equation (2), not the transformed parameters in equations (3) and 
(4). It is also important to note that the values of these statistics depend directly on the 
specific values of x1 and x2. While in a simple ordinary least squares model the impacts 
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of the two explanatory variables can be perfectly described by the two coefficients, in this 
nonlinear probit model one would need a three dimensional representation to describe all 
of the possible values of the impacts of the two explanatory variables.  
 
Instead of examining all possible values of x2, consider evaluating the probability that 
d=1 varies with x1 at a few values for x2. We also look at the average probability at each 
value of x1 where we average (integrate) over all values of x2 under the assumption that 
x2 follows a standard normal distribution. Figure 4 graphs the Prob(d=1|x1 , x ) against 
x1  for three different values of x 2 , namely, : -1, 0, and 1. It also contains the average 
Prob(d=1|x , x ), where we average across values of  x

2

1 2 2  using  a standard normal 
distribution for this variable. This yields: 
 
 
 

x1

 probx1x2_neg1  probx1x2_0
 probx1x2_pos1  avgprob_x1x2

-5 0 5

0

.5

1

 
Figure 4. Prob(d=1|x , x ) against x1    1 2

 
Note that the curve of Prob(d=1|x1 , x ) averaged with respect to G(x ) (distribution of 
x 2 ) is identical to Figure 1 above. 

2 2

Then we graph 
1

21

x
) x,x|1(Pr

∂
=∂ dob  against x1  for the same values of x 2  (-1, 0, 1) as 

well as adding to the same graph 
1

21

x
) x,x|1(Pr

∂
=∂ dob  averaged with respect to G(x ).  2
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x1

 derx1p2_neg1  derx1p2_0
 derx1p2_pos1  avgderx1p2

-5 0 5

0

.2

.4

 

Figure 5. 
1

21

x
) x,x|1(Pr

∂
=∂ dob  against x1  

 

Note that the curve of 
1

21

x
) x,x|1(Pr

∂
=∂ dob  averaged with respect to G(x ) is identical 

to Figure 2. 

2

 

 11



Consider the graph of 
1

21

x
) x,x|1(Pr

∂
=∂ dob  against Prob(d=1|x1 , x ): 2

 

prob

 avgderx1p2  derx1p2

0 .5 1

0

.1

.2

.3

.4

 

Figure 6. 
1

21

x
) x,x|1(Pr

∂
=∂ dob  and the averaged derivative against respective 

probabilities. 
 
Comparing the two functions graphed in Figure 6, it is clear that we get different results: 
the marginal effects are different depending on the availability of information about x . 
One might even say that in the first case (without x ) the derivative is wrong, and only 
after knowing x 2  can one obtain the correct effect of x

2

2

1 on d. Is it true? And why does 
this problem actually exist?  
  
Revisit the original model: 
 

⎩
⎨
⎧ ≥

=
otherwise 0

0I if 1 it
id   

 
Define I  as  it

it2i21it10it +xx + = I εααα + ,  

where assume ε  is normally distributed with variance equal to 1, x  is distributed 

normally i.e. N (0, ), and 
it i2

2
2xσ itε , x , x  are independent of each other. As for the actual 

value of x , it might be known or it might be not, as noted already. Consider the 
following two cases. 

it1 i2

i2
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1) x  is known i2

 
Then one has  

it2i21it10it +xx + = I εααα + , 

In the probit model (again, let’s switch for simplicity to the notation of x’s as x1  and x ) 
one has: 

2

Prob (d=1| x , x ) = 1 2 (Φ 22110 xx + ααα + ), where Φ (.) is standard normal distribution. 

1

21

x
) x,x|1(Pr

∂
=∂ dob = (1 φα ⋅ 22110 xx + ααα + ), where φ (.) is the standard normal 

density. 
 
2) x  is NOT known i2

 
Then, I =it β 0 + β 1  x +it1 itν , where the new error term itν  is “α 2 x +i2 ε it ” in terms of 
the variables from above; the standard probit normalization sets var(ν )=1 as well. 

,dz e
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1dz e
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where , z =12
2

2
2 +⋅= xb σα

1

)+x(
2
2

2
2

22

+⋅

−

xσα

εα  which is distributed N(0,1), =∗0α
b
0α

, =∗1α b
1α . 

Clearly, 
1

1

x
)x|1(Pr

∂
=∂ dob = . )( 1101 x∗∗∗ +⋅ ααφα

Solving for 
1

1

x
)x|1(Pr

∂
=∂ dob >

1

21

x
) x,x|1(Pr

∂
=∂ dob  for any given value of x1  yields 

the ranges of x 2  where derivative of the probability of d conditional on only x1 exceeds 
that when conditioning on both x1 and x : 2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+∞

++−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +−−
∞− ;

)log(/)log(/2

α
;

2

2

2 α
bbaabbaa

U 0  + , where 11xαα=a , 

. In other words, without knowing x  one cannot say unambiguously 
whether the first marginal effect will be larger in magnitude than the second one, for a 
given value of x1 . Moreover, the length of the interval where the probability derivative 
when conditioning only on x

12
2

2
2 +⋅= xb σα 2

1 is less than that after conditioning on both x1 and x2 is a 
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nonlinear function of x1  i.e.
2

2 )log(/2
α

bba +
 with the minimum at x1 =

1

0

α
α

− . To better 

illustrate this, Figures 7 through 11 graph both derivatives against x  for five different 
values of x1 : -3, -1, 0, 1, 3. 

2

 

x2

 derx1p2_x1neg3  derx1_x1neg3

-4 -2 0 2 4

0

.2

.4

 

Figure 7. 
1x

d 1 )x|1(Pr
∂

=∂ ob and
1

21

x
) x,x|1(Pr

∂
=∂ dob  against x  when x1 = -3 2
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x2

 derx1p2_x1neg1  derx1_x1neg1
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Figure 8. 
1

1

x
)x|1(Pr

∂
=∂ dob and

1

21

x
) x,x|1(Pr

∂
=∂ dob  against x  when x1 = -1 2
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x2
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Figure 9. 
1

1

x
)x|1(Pr

∂
=∂ dob and

1

21

x
) x,x|1(Pr

∂
=∂ dob  against x  when x1 = 0 2
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x2
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Figure 10. 
1

1

x
)x|1(Pr

∂
=∂ dob and

1

21

x
) x,x|1(Pr

∂
=∂ dob  against x  when x1 = 1 2
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x2

 derx1p2_x1pos3  derx1_x1pos3
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Figure 11. 
1

1

x
)x|1(Pr

∂
=∂ dob and

1

21

x
) x,x|1(Pr

∂
=∂ dob  against x  when x1 = 3 2

 
From the graphs one can see that the shortest interval (i.e. the segment of the straight line 
“inside” of the nonlinear derivative function) is for x1 =0. This is a ‘true’ minimum (in 

our simulations, 0α  was set to zero as was mentioned above, and so x1 =
1

0

α
α

− = 0 yields 

the smallest interval). Table 1 displays this a bit more compactly. Here, for each of five 
values for x1 , the column displays the true conditional derivative after conditioning on 
both x1  and x2 as a function of x2. The table also highlights the values or x2 where the 
conditional on x2 and unconditional effects coincide.  
 
 For a given value of x1  different values of x  yield different marginal effects. In 
other words having or not having information about x  will change one’s results. This, 
however, does not mean that one model (e.g. when one does not have values of x ) is 
necessarily biased while the other is unbiased. It is just a matter of what information the 
researcher considers relevant for conditioning on in her analysis. And, even if 
information on x

2

2

2

2 were available for estimation, typically one would not want to use the 
conditional on x2 estimates for making inferences about situations where one cannot 
condition on x2. 
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  There is one additional implication of this analysis demonstrating that the scale of 
the estimated effects can often be irrelevant in one’s analysis. Suppose the x1  variable 
from above is, instead of being a scalar variable, a vector of two covariates determining 
the outcome d. Let these two elements be labeled  and Ax1 Bx1  and let their coefficients in 
equation (2) be A1α  and B1α . In many situations it is the relative magnitude of these 
effects that matter. For example,  and  might measure the intensity of two 
different treatments for affecting the outcome d, and one might be interested in assessing 
which treatment is the more cost effective. Continuing this example, suppose that an 
additional unit of  costs  dollars and an additional unit of treatment  costs . 
An additional dollar spent using treatment A will result in an increase in treatment A 

intensity of 

Ax1 Bx1

Ax1 Ap Bx1 Bp

Ap
1  units of . This would translate to a change in the probability index in 

equation (1) of 

Ax1

A

A

p
1α

. Similarly, that one dollar spent on treatment B would increase the 

probability index by 
B

B

p
1α . An assessment of which treatment is more cost effective 

would compare 
A

A

p
1α  to 

B

B

p
1α . If 

B

A

1

1

α
α  were greater than 

B

A

p
p , then one would conclude 

that treatment A was the more cost effective treatment.  
 If one instead estimated only the simple probit model, as in equation (3), then one 
would need to compare coefficients normalized to reflect the different error variance. 
Following the same derivations as above, the normalization factor on the coefficients of 

 and  would be identical in the simple probit model. This means that the ratio of 

these differently normalized coefficients would be identical to the above ratio 

Ax1 Bx1

B

A

1

1

α
α , 

except for sampling and estimation error.  In these two models one would use exactly the 
same form for a test to decide which treatment was the more effective.  
 In many situations like this example, the most interesting interpretations of 
estimated covariate effects can be described by a comparison of the relative effects of 
covariates within a model. Such comparisons typically do not depend on the scale of the 
error normalization. Hence, for many policy analyses, there would be little reason to 
prefer the model as described in equation (2) over the model described by equation (3), 
except for the fact that an explicit recognition of the correlation among observations can 
lead to more efficient parameter estimates and more powerful tests.  
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) x,x|1(Pr

∂
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 x1 = -3 x1 = -1 x1 = 0 x1 = 1 x1 = 3 

x 2 = -3 <0.00014 <0.0001. 0 0 .00443 

x = -2.42323 2 <0.0001 <0.0001 <0.0001 .00024 .07253 

x = -1.17257 2 <0.0001 .00148 .02550 .16143 .32194 

x = -.63431 2 .00004 .03043 .17841 .38480 .08911 

x = -.57676 2 .00007 .03925 .20510 .39426 .07253 

x = -.17257 2 .00148 .16143 .37587 .32194 .01175 

x 2 = 0 .00443 .24197 .39894 .24197 .00443 

x = .17257 2 .01175 .32194 .37587 .16143 .00148 

x = .57676 2 .07253 .39426 .20510 .03925 .00007 

x = .63431 2 .08911 .38480 .17841 .03043 .00004 

x = 1.17257 2 .32194 .16143 .02550 .00148 <0.0001 

x = 2.42323 2 .07253 .00024 <0.0001 <0.0001 <0.0001 

x 2 = 3 .00443 <0.0001 <0.0001 <0.0001 <0.0001 

1

1

2
1

21

)|1(Pr

)(),|1(Pr

x
xdob

xdG
x

xxdob

∂
=∂

=

=
∂
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∫
+∞
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.07253 .16143 .17841 .16143 .07253 

Cutoff points (of x ) 2 (.57676; 
2.42323) 

(-.17257; 
1.17257) 

(-.63431; 
.63431) 

(-1.17257; 
.17257) 

(-2.42323; 
-.57676) 
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Section III. Models with Logistic Distributions 
 
 A nearly identical type of analysis can be carried out for the situation where the 
underlying probability model is a standard, linear index logistic probability function. This 
analysis is presented in detail in Appendix A. The only real, substantive difference 
between the analyses for the probit and logit models is on the conditions for the 
distribution of the second explanatory variable that must be satisfied in order for the 
conditional on x2 and unconditional on x2 models to both fall in the class of linear index 
logistic probability functions.  
 
 For the case of the logistic function, one can again demonstrate that the 
derivatives are nonlinear functions of the two explanatory variables, that the derivatives 
depend on the information one conditions on, and that there are ranges for the second 
explanatory variable where the derivatives with respect to the first explanatory variable 
conditional on knowing the values for the second explanatory variable are smaller (or 
larger) than those where one does not condition on the second explanatory variable. That 
is, the primary lessons from the analysis of the probit case carry over to the logistic case. 
When interpreting estimates from multilevel logistic models, however, it is crucial to 
recognize that the “standard” logistic error variance is 2 3π  instead of the 1.0 typically 
used for the normal disturbances in probit models. 
 
 
 
Section IV: Claims of Bias in the Literature Partially Attributable to Differences in 
Conditioning Sets 
 
IV.1 Biases in Multilevel models 
 
 An influential paper by Rodriguez and Goldman (1995) has lead many 
researchers to conclude that, for binary outcome models in the presence of multilevel 
error structures, simple models that do not incorporate the multilevel error structure will 
yield biased estimators. The framework of the multilevel model fits neatly into the 
analysis presented above. In this case, the variable x2 can be considered as the 
“unobserved” higher level factor giving rise to the multilevel error structure.  
 When one estimates a multilevel model for binary outcomes, one typically 
imposes the assumption that the variance of the lowest level error term follows the 
standard normalization assumption for the chosen binary outcome model.  What this 
means is that comparisons of the models with and without the controls for multilevel 
structures implicitly are using a different variance normalization. 
 Consider the Monte Carlo experiments reported by Rodriguez and Goldman 
(1995).  Part of the information on the effects of covariates in their Table 4, for effects 
estimated by standard logit models that ignore the multilevel structure, is displayed below 
in our Table 2. The implicit variance for a “standard” logistic distribution is 2 3π . The 
simple logit model, then, assumes that all of the variance of the error, akin to the total 
error as displayed in equation (2), is 2 3π . The multilevel model used to generate their 
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data, however, assumes that the total error variance is much larger1. The total, 
unconditional error variance in their model is 2 2 2 23 3 1 1 5.29Fam Comπ σ σ π+ + = + + ≈ as 
opposed to the implicit variance of the simple logistic model ( 2 3π ) that is 
approximately equal to 3.29. 
 As demonstrated above and in Appendix A, if one knows the error variance then 
one should be able to translate from the estimates that do not condition on the error 
components to those that do. This exercise is carried out in Table 2. There, we see that for 
each of the six average logit parameter estimates reported by Rodriguez and Goldman 
(1995, Table 4), the adjusted coefficients are much closer to the true parameter estimates 
than the unadjusted estimates2.  These differences in estimates are due to the fact that the 
simple logit and the multilevel model use different information sets. The former only 
conditions on the observed covariates. The multilevel model, in a sense, also holds 
constant the unobserved error components.  
 Much of the evidence on bias for the logit estimators in multilevel models, then, is 
really evidence that the two approaches use different information sets. If the goal of the 
estimation is to understand the effects of changes in an observed covariate holding the 
error components fixed at some known level, then the multilevel model estimates would 
be more appropriate measures of the log-odds ratio. This would be the case where one is 
interested in the impacts of a covariate on one of the sampled families in one of the 
sampled communities. If, on the other hand, one wants to use the estimates to extrapolate 
to the broader population, then it would be necessary to integrate over the unobserved 
family and community effects as was done to derive the probability derivatives without 
conditioning on the second explanatory variable as in Section II. In this case the simple 
logit model would provide better estimates of the log-odds effect, as that model implicitly 
integrates over these unobserved components.  Neuhaus, Kalbfleisch, and Hauck(1991) 
provide a more complete discussion of the interpretation of coefficient estimates in binary 
outcome models with correlated outcomes. 
 
 

                                                 
1 From Rodriguez and Goldman (1995), p.81, “This procedure is exactly equivalent to the alternative of 
adding the higher level random effects to the linear predictor, calculating antilogits to obtain a conditional 
probability and then generating a Bernoulli random variable.”   
2 If one carries out a similar exercise for Rodriguez and Goldman’s (1995) Table 1 (p.83), one finds that a 
similar error variance adjustment, assuming that the VARCL procedure imposes an overall error variance 
equal to that in a standard logistic model, yields average coefficients that are quite close to the true value of 
1.0 . We do not have access to the computer code for the VARCL software, so we could not evaluate 
whether that model does hold the overall error variance fixed. Alternatively, in these models the first order 
expansion of the likelihood used to estimate this model is about the point where the higher-level variances 
are 0, and this could be the feature that yields these parameter estimates. This appears to be the reason for 
Goldstein and Rasbash (1996) suggesting the use of second-order penalized quasi-likelihood in binary 
outcome multilevel models. 
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Table 2 

A Re-Examination of Rodriguez and Goldman (1995)’s 
Evidence on Biases in Multilevel Logit Models (From Their Table 4, p. 86) 

(σFam  = σCom  = 1) 
 

(1) (2) (3) (4) (5) 
 True 

Parameter 
Value 

Mean Effect 
Reported By 
Goldman and 
Rodriguez 

Implicit  
Normalization, 

2

2 2 2

/ 3
/ 3 Fam Com

π
π σ σ+ +

  

Variance 
Adjusted 
Effect, 
 
col(3)/col(4) 

Guatemala  
Model 

    

 Child Effect 1 0.738 0.787 0.938 
 Family Effect 1 0.744 0.787 0.945 
 Community Effect 1 0.771 0.787 0.973 
Rectangular 
Model 

    

 Child Effect 1 0.756 0.787 0.961 
 Family Effect 1 0.755 0.787 0.959 
Community Effect 1 0.906 0.787 1.151 

 
 
 
IV.2 Testing for Endogeneity with Conditional Logit Model Estimators 
  
 The conditional logit estimator has been suggested as an approach to use to test 
for the endogeneity of explanatory variables in a discrete outcome, panel data model. See, 
for example, Cecchetti’s (1986) application of the test and the testing approach presented 
in Greene (2001, p.841). Chamberlain (1983) provides detailed information about the 
“fixed-effect” conditional logit estimator. The test considers whether the coefficients on 
the time varying explanatory variables change significantly when one uses a conditional 
logit estimation approach instead of a simple logit model applied to all the data. In 
general, it is implemented like a Hausman (1978) test for model misspecification. 
 If the source of heterogeneity is independent of all the explanatory variables, then 
one is in a situation described by comparing equations (2) and (3). Equation (2) would 
correspond to the model conditioning on the individual persistent effect, while equation 
(3) would correspond to the standard logit estimator. Both the conditional logit and the 
standard logit assume a standard logistic distribution for their remaining error terms, and 
so a direct comparison of the estimates obtained from these two models should indicate a 
difference in levels of the estimated coefficients whenever there is a heterogeneity. The 
presence of heterogeneity, however, does not by itself indicate that any of the exogenous 
variables are endogenous in the sense that they are correlated with the error components.  
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Consider the following panel data model which is a simple extension of that 
presented in equation (2) 
 

0 1 1 2 2 , 1it it it i it it itI x x d I 0α α α η ε= + + + + = ⇔ >  
   
where the observed explanatory variables x1and x2 are independent of the error 
components ε  and η . We assume, as in the multilevel formulation, that ε  and η  are 
independent, that ε  follows a standard logistic distribution, and that the sum of the two 
error components follows a general logistic distribution. If one conditions out the 
observation i specific effect η, then the resulting disturbances, ε , follow a standard 
logistic distribution. 
 Since the observed explanatory variables are independent of the composite error 
term, one can use simple logit estimator to obtain consistent estimates of the effects of x1 
and x2 after adjusting for the variance normalization. Let this estimation model be 
 

* * * *
0 1 1 2 2

2
*

2

* 2

,

/ 3
( ) / 3

( ) / 3

it it it it

j j

it

I x x

where
Var

and Var

α α α ν

πα α
η π

ν π

= + + +

=
+

=

 

 
Whenever the Var(η) is not equal to zero, and the conditional logit model and  the simple 
logistic model will estimate different coefficients. In the former case these correspond to 
a logit model holding constant the η, while in the latter case the estimates correspond to a 
logistic model after integrating out the observation specific components η. Therefore, 
finding that the coefficients  do not equal  is not compelling evidence that the 
explanatory variables x

∗
jα jα

1 and x2   are endogenous in the sense of the explanatory variables 
being correlated with the error term. The coefficients might differ only because one is 
implicitly conditioning on different information sets. Such a test, however, is a test for 
the presence of heterogeneity.  
 There is, however, a simple test that can be used to test for the exogeneity of x1 
and x2 with respect to the component η.  In particular, since the error variance 
normalization is identical for all coefficients, then under the null hypothesis that the x1 
and x2 are independent of η the ratio of any two coefficients from the standard logit 
model should equal the ratio of the coefficients corresponding to the same two variables 
in the conditional logit model. For example, the test statistic might be whether the 

difference 

^ ^
*

11
^ ^

*
22

α α

αα
−  is significantly different from zero. If it were, then this would be 

evidence that at least one of the explanatory variables is not independent of the error 
component η. The standard error of the estimated difference could easily be calculated 
from a bootstrap procedure where one samples on observations i (not independently on 
the (i,t) pairs) to reflect the fact that the composite error terms could be correlated across t 
for any observation. 
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IV.3 Biases in the Estimation of Hazard models with Heckman-Singer Semi-parametric 
Heterogeneity Controls 
 
 A recent paper by Baker and Melino (2000) explores the use of Heckman-Singer 
unobserved heterogeneity in discrete time hazard models. The main point of their study 
deals with the number of support one should use to approximate the distribution of 
unobserved heterogeneity in such hazard models. They find that as one uses additional 
discrete points of support to approximate the heterogeneity distribution that the estimated 
coefficient on the observed covariates tend to rise to levels above those specified in the 
data generating process. The primary recommendation from their analysis is that one 
should be quite conservative in adding additional points of support to the estimated 
heterogeneity distribution.  
 A key point ignored in their analysis is that the variance of the estimated 
heterogeneity distribution, given that they are only approximating the true model, need 
not closely resemble the true heterogeneity distribution. Consequently, their 
interpretations and comparisons of absolute levels of the coefficients on observed 
covariates could be comparing coefficients estimated with quite different error 
normalizations. This is precisely what the discussion in Section II suggests can lead to 
incorrect inferences. The model Baker and Melino (2000) examine, however, is much 
more complex that those discussed above. This is due to the fact that a hazard rate model 
with unobserved heterogeneity, by definition, implies a data generating process with 
potentially severe sample selection biases. Nonetheless, it is informative to examine 
whether using simple normalizations to control for the differences in the error variances 
in their discrete outcome models might alter the conclusions of their study. 
 For the most part one cannot interpret the simulation results reported by Baker 
and Melino (2000) in a way that allows one to address whether adjustments for different 
error variances across estimation approaches might alter the main conclusions of their 
analysis.  The information they present in their Table 1, for a single replication for one 
data generating mechanism for three different sample sizes, however, does contain 
enough information to assess the sensitivity of their results to adjustments for error 
variances for that one replication. While not definitive, the results are quite suggestive.  
 Table 3 contains information from Baker and Melino’s (2000) Table 1 plus some 
calculations made using their estimates of the estimated heterogeneity distributions for 
these three samples. The adjustment factor used in Table 3 is the ratio of the true total 
error variance to that estimated by the discrete heterogeneity model, i.e., 

( )
^

21 / 3 / 3Varπ ⎛+ +⎜
⎝ ⎠

2π ⎞
⎟

                                                

. A comparison, for this one replication, of the estimated β 

coefficients and the adjusted coefficients displayed in the last column indicates that the 
adjusted coefficients are much closer to the true parameter value than the estimates 
reported by Baker and Melino (2000)3. In particular for those models using three and four 
points of support, the resulting “biases” fall by over fifty percent after recognizing that 

 
3 Baker and Melino (2000) present two additional pieces of information that support this inference of their 
reported biases being due to their failure to recognize the differences in error variance. First, they find that 
the models with the “excessively” large coefficients predict the underlying hazard rates quite well (pp. 382-
5). Second, they find that the predicted expected values of the duration conditional on covariate values are 
more accurate when one uses higher number of points of support (p.385-6). It is typically these quantities 
that are of interest to researchers.  
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the absolute level of the coefficients can only convey information about interesting 
magnitudes after normalizing on the error variance4.  If this single observation is not an 
aberration, their finding of large biases from using nonparametric heterogeneity 
corrections might be called into question. Additionally, their recommendation to penalize 
severely models with higher numbers of points of support when choosing the controls for 
unobserved heterogeneity might lead to underspecified empirical models. For example, 
Fenton and Gallant (1996) and Mroz (1999) each presents Monte Carlo evidence that 
criteria like the Akaike Information Criteria can lead to underspecified models and 
inaccurate predictions when one is attempting to approximate an unknown distribution. 
The Hannan-Quinn Information Criterion suggested by Baker and Melino (2000) will 
tend to be more conservative in adding points of support whenever the sample size is 
greater than 55. The difficulties Baker and Melino (2000) find for estimating the 
distribution of unobserved heterogeneity in the presence of unknown forms of duration 
dependence, however, does suggest that single spell duration models can provide very 
little information about unobserved heterogeneity.  

                                                 
4 Ideally one would compare relative magnitudes of effects as noted above. But since Baker and 
Melino’s(2000) Monte Carlo only used a single observed explanatory variable, we are forced to compare 
estimated coefficients to estimated error standard deviations.  
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Table 3 

A Re-Evaluation of Baker and Melino’s (2000) Estimates from Their Table 1 
 
Number of 
Points of 
Support 

True 
 
β 

Estimated 
 
β 

Estimated 
Heterogeneity 

Variance 

Adjustment 
to β for 

comparison 
with True 

DGP 

Adjusted 
 
β 

Sample 
size:   500 

     

1 1.00 0.731 0.00 1.142 0.834 
2 1.00 0.740 27.863 0.371 0.275 

3 (inferior)* 1.00 1.079 24.258 0.395 0.426 
3 1.00 1.615 3.796 0.778 1.257 
4 1.00 1.737 4.326 0.751 1.304 
      

Sample 
Size:  1000 

     

1 1.00 0.665 0.00 1.142 0.759 
2 1.00 0.671 4.228 0.755 0.506 
3 1.00 0.976 0.810 1.023 0.998 
4 1.00 1.333 2.287 0.834 1.112 
      

Sample 
Size:   5000 

     

1 1.00 0.670 0.00 1.142 0.765 
2 1.00 1.066 1.085 0.991 1.056 
3 1.00 1.216 1.942 0.906 1.101 
4 1.00 1.269 2.219 0.885 1.123 

 
* This estimation achieved a lower likelihood function value than the exact same 
specification’s in the next row.  
 

 27



 
Section V: Conclusions 
 
 The interpretation of coefficient estimates from binary outcome models with 
unobserved error components is complicated by the fact that different statistical model 
specifications implicitly alter the interpretation of the coefficients on explanatory 
variables. The results presented above indicate that one needs to be somewhat cautious 
when comparing estimates from different estimation procedures, even those within 
roughly the same family of estimators. A simple extension of these results suggests that 
one should exercise a large degree of caution when interpreting the coefficient estimates 
from binary outcome models obtained from different samples even if they use identical 
estimation procedures. The reason for all of these results is that interpretation of the 
regression coefficients in binary outcome models as indicators of true magnitudes 
crucially depends on arbitrary normalizations that are used in the estimation of binary 
outcome models.  
 While direct comparisons and interpretations of the coefficients from different 
estimation approaches for binary outcomes can be quite problematic, nearly all 
interesting magnitudes related to probabilities and impacts of covariates on predicted 
probabilities can be compared across different models. In fact, in many important 
instances comparisons of relative effects of covariates are directly comparable across 
estimation approaches. If researchers would focus on policy-relevant numerical 
quantities, rather than conveniently chosen “effects,” nearly all of the interpretation 
problems we have highlighted in this paper would vanish. This, in fact, is the main 
conclusion of this paper.  
 There would still be problems related to the sensitivity of predicted probabilities 
and probability derivatives to variations in the conditioning sets used to define the 
probabilities. Many issues that are nearly completely irrelevant in standard linear 
regression models can have key impacts on the magnitudes of effects estimated with 
nonlinear models. For the cases illustrated here, whether one should or should not 
condition on unobserved heterogeneity in the interpretation of the effects of observed 
covariates can be crucially important for inferences from nonlinear models. Additionally, 
as opposed to the intuition researchers have developed for interpreting linear models, the 
effect of an observed covariate in a nonlinear model usually depends critically on the 
exact values taken on by all explanatory variables. Precise definitions of the substantive 
effects researchers want to uncover, however, would usually resolve many of these 
issues. There certainly could be differences in opinion among researchers about what are 
the correct effects to consider. However, we could learn much more if researchers would 
state the reasons why one should prefer inferences about one type of specific effect to 
another. An arbitrary label of “bias” applied to an estimation procedure because its 
implicit normalization does not correspond to just one particular and often arbitrary 
definition of a type of effect, without a statement of why that particular type of effect is 
of key importance, could lead to many invalid inferences.  
 

 28



Appendix A: The Logistic Model  
 
Suppose the discrete model is of the form: 
 

⎩
⎨
⎧ ≥

=
otherwise 0

0I if 1 it
id   

 
One knows that I  depends on a linear function of x1 . One also believes that x  may 
enter the equation of interest linearly. Specifically, the true model is: 

it 2

 
it2i21it10it +xx + = I εααα +         (5) 

where itε , x , x  are independent of each other. We assume it1 i2 itε  is distributed 

logistically with mean 0 and variance 
3

2π ; and x  is distributed such that i2 2
  x 2i2it αε +

 is 

distributed logistically (0, 
3

2π ). These assumptions ensure that a logit model is 

appropriate with and without the inclusion of x  in the model.  i2

 
Suppose there is no information on x  at hand. Given the above model, it is the 

case that x  is independent of 
i2

it1 itν =α 2 x +i2 ε it . This produces a ‘new’ logit model of 
the form: 

 
I =it β 0 + β 1  x +it1 itν          (6) 
 
If one does not observe x2it , then all that can be learned from the data is how the 
probability of the discrete event dit  varies with changes in x1it . Using equation (5) and 
the fact that x2it is independent of x  and it1 itε , one can solve for this conditional 
probability in terms of a logistical error term as would be imposed in a typical logit 
analysis. For simplicity we do not explicitly use the i and t subscripts: 
  
Formally: 
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logistic distribution. Under the assumption that

Λ

00 =α , 11 =α , 22 =α  the graph of this 
conditional probability as only a function of x1 is given by: 
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Figure 12. Prob (d=1| x ) against x1  1

 
This probability is clearly increasing in x1, but it would be informative to understand 
quantitatively how this probability changes with x1.  

From the derivations above it follows that 
1
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Graphing this derivative, 
1

1
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)x|1(Pr

∂
=∂ dob , against x  yields: 1
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Since each value of x1  implies a unique value of the Prob (d=1| x1 ), we can also graph 
the above derivative against the probability d=1 for each value of x1. This yields: 
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Figure 14. 
1

1

x
)x|1(Pr

∂
=∂ dob  against Prob (d=1| x1 ) 

 
If there is no information available about x2 , then Figures 13 and 14 provide all of the 
information that one can learn about how the event {d=1} is affected by changes in the 
value of x1.  Logit estimators that relate the dummy variable d to only the variable x1 
provide asymptotically unbiased and consistent estimators of the coefficients  and . 
These estimators will then yield consistent estimators of the derivatives of the probability 
that d=1 when there is no information available about x

*
0α *

1α

2. 
 
Next, assume that information on x  becomes available for each observation. The 
researcher now can consider using the information on d, x

2

1 and x2 to carry out a logit 
estimation of equation (5) instead of equation (6). Following the same steps as above, one 
can solve for  
Prob (d=1| x , x )= (1 2 Λ 22110 xx + ααα + ) and 
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x
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.  

Note that in this instance the probability and probability derivatives correspond to the 
original parameters in equation (5), not the transformed parameters in equation (6). It is 
also important to note that the values of these statistics depend directly on the specific 
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values of x1 and x2. While in a simple ordinary least squares model the impacts of the two 
explanatory variables can be perfectly described by the two coefficients, in this nonlinear 
probit model one would need a three dimensional representation to describe all of the 
possible values of the impacts of the two explanatory variables.  
Instead of examining all possible values of x2, consider evaluating the probability that 
d=1 varies with x1 at a few values for x2. We also look at the average probability at each 
value of x1 where we average over all values of x2. 
Figure 15 graphs the Prob(d=1|x1 , x 2 ) against x1  for three different values of x , 
namely, : -1, 0, and 1. It also contains the average Prob(d=1|x , x ), where we average 
across values of x

2

1 2

2. 
 

x1

 probx1x2_neg1  probx1x2_0
 probx1x2_pos1  avgprobx1x2

-5 0 5

0

.5

1

 
Figure 15. Prob(d=1|x , x ) against x1    1 2

 
Note that the curve of Prob(d=1|x1 , x ) averaged with respect to G(x ) is identical to 
Figure 12 above. 

2 2

Then we graph 
1

21

x
) x,x|1(Pr

∂
=∂ dob  against x1  for the same values of x 2  (-1, 0, 1) as 

well as adding to the same graph 
1

21

x
) x,x|1(Pr

∂
=∂ dob  averaged with respect to G(x ).  2
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x1

 derx1x2_neg1  derx1x2_0
 derx1x2_pos1  avgderx1x2
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0
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Figure 16. 
1

21

x
) x,x|1(Pr

∂
=∂ dob  against x1  

Note that the curve of 
1

21

x
) x,x|1(Pr

∂
=∂ dob  averaged with respect to G(x ) is identical 

to Figure 13. 

2
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Consider the graph of 
1

21

x
) x,x|1(Pr

∂
=∂ dob  against Prob(d=1|x1 , x ): 2

prob

 avgderx1x2  derx1x2

0 .5 1

0

.2

.4

 

Figure 17. 
1

21

x
) x,x|1(Pr

∂
=∂ dob  and the averaged derivative against respective 

probabilities. 
 
Comparing the two functions graphed in Figure 17, it is clear that we get different results: 
the marginal effects are different depending on the availability of information about x . 
One might even say that in the first case (without x ) the derivative is wrong, and only 
after knowing x 2  can one obtain the correct effect of x

2

2

1 on d. Is it true? And why does 
this problem actually exist? 
 
 
Revisit the original model: 
 

⎩
⎨
⎧ ≥

=
otherwise 0

0I if 1 it
id   
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Define I  as  it

 
it2i21it10it +xx + = I εααα + ,  

where itε , x , x  are independent of each other, it1 i2 itε  is distributed logistically with mean 

0 and variance 
3

2π , x  is distributed such that i2 2
  x 2i2it αε +

 is distributed logistically (0, 

3

2π ). 

As for the actual value of x , it might be known or it might be not, as noted already. 
Consider the following two cases. 

i2

 
1) x  is known i2

 
Then one has  

it2i21it10it +xx + = I εααα + , 

In logit model (again, let’s switch for simplicity to notation of x’s as x1  and x ) one has: 2

Prob (d=1| x , x ) = (1 2 Λ 22110 xx + ααα + ), where Λ (.) is logistic distribution. 

1

21

x
) x,x|1(Pr

∂
=∂ dob = 2

22110

22110
1 ))xexp(1(

)xexp(
 

ααα
ααα

α
+++
++

x
x

. 

 
2) x  is NOT known i2

 
Then, I =it β 0 + β 1  x +it1 itν , where the new error term itν  is “α 2 x +i2 ε it ” in terms of 
the variables from above. 

),()x
22

(
2

x 
Prob 

2
)+x(

2
x 

Pr

))+x(x (Pr)0+xx + Prob()x|1Prob(d

1101
1011022110

22110221101

xzob
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 where z =
2

)+x( 22 εα−  which is distributed Λ (0, 
3

2π ), =∗0α
2

0α
, =∗1α 2

1α , (.) is 

logistic distribution. 

Λ

Clearly, 
1

1

x
)x|1(Pr

∂
=∂ dob = 2

110

110
1 ))exp(1(

)exp(
 

x
x
∗∗

∗∗
∗

++
+
αα
αα

α . 

Solving for 
1

1

x
)x|1(Pr

∂
=∂ dob >

1

21

x
) x,x|1(Pr

∂
=∂ dob  for any given value of x1  yields 

the ranges of x 2  where derivative of the probability of d conditional on only x1 exceeds 
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that when conditioning on both x1 and x : 2

( )

( )
⎟
⎟

⎠

⎞

⎜
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⎝
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−−+×++++
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⎠

⎞

⎜
⎜

⎝

⎛ −−+×+−++
∞−

;
x-)log(1)1(1log

x-)log(1)1(1log
;

2

110
22

2

110
22

α
αα

α
αα

aaaaa

aaaaa

U

U

 

where . In other words, without knowing x  one cannot say 
unambiguously whether the first marginal effect will be bigger than the second one, for a 
given value of x1 . Moreover, the length of the interval where the probability derivative 
when conditioning only on x

)exp( 110 xa ∗∗ += αα 2

1 is less than that after conditioning on both x1 and x2 is a 
nonlinear function of x1  i.e. 

( ) ( )
2

2222 1)1(1log1)1(1log
α

aaaaaaaa +×+−++−+++++ ×  with the minimum at 

x1 =0. To better illustrate this, Figures 18 through 22 graph both derivatives against x  
for five different values of x1 : -3, -1, 0, 1, 3. 

2

 

x2

 derx1x2_x1neg3  derx1_x1neg3

.573 5.427-6 0 6

0

.2

.4

 

Figure 18. 
1

1

x
)x|1(Pr

∂
=∂ dob  and 

1

21

x
) x,x|1(Pr

∂
=∂ dob  against x  when x1 = -3 2

Vertical lines at values of x  .57331 and 5.42669 indicate that the averaged derivative 
and specific values of the derivative are equal. 

2
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x2

 derx1x2_x1neg1  derx1_x1neg1
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Figure 19. 
1

1

x
)x|1(Pr

∂
=∂ dob  and 

1

21

x
) x,x|1(Pr

∂
=∂ dob  against x  when x1 = -1 2

Vertical lines at values of x  -.84894 and 2.84894 indicate that the averaged 
derivative and specific values of the derivative are equal. 

2
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x2
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Figure 20. 
1

1

x
)x|1(Pr

∂
=∂ dob  and 

1

21

x
) x,x|1(Pr

∂
=∂ dob  against x  when x1 = 0 2

Vertical lines at values of x   -1.76275 and 1.76275 indicate that the averaged 
derivative and specific values of the derivative are equal. 

2
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x2
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Figure 21. 
1

1

x
)x|1(Pr

∂
=∂ dob  and 

1

21

x
) x,x|1(Pr

∂
=∂ dob  against x  when x1 = 1 2

Vertical lines at values of x  -2.84894 and .84894 indicate that the averaged 
derivative and specific values of the derivative are equal. 

2
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x2

 derx1x2_x1pos3  derx1_x1pos3
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Figure 22. 
1

1

x
)x|1(Pr

∂
=∂ dob  and 

1

21

x
) x,x|1(Pr

∂
=∂ dob  against x  when x1 = 3 2

Vertical lines at values of x  -5.42669 and -.57331 indicate that the averaged 
derivative and specific values of the derivative are equal. 

2

 
From the graphs one can see that the shortest interval (i.e. the segment of the straight line 
“inside” of the nonlinear derivative function) is for x1 =0, which is a ‘true’ minimum. 
Table 4 displays this a bit more compactly. Here, for each of five values for x1 , the 
column displays the true conditional derivative after conditioning on both x1  and x2 as a 
function of x2. The table also highlights the values or x2 where the conditional on x2 and 
unconditional effects coincide. 
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Table 4 

 

1

21

x
) x,x|1(Pr

∂
=∂ dob  

 
 x1 = -3 x1 = -1 x1 = 0 x1 = 1 x1 = 3 

x 2 = -6 .00012 .00091 .00246 .00664 .04517 

x = -5.42669 2 .00021 .00161 .00435 .01167 .07457 

x = -2.84894 2 .00286 .02042 .05174 .11750 .24857 

x = -1.76275 2 .00839 .05584 .125 .21689 .17432 

x = -.84894 2 .02042 .11750 .20986 .24857 .09336 

x = -.57331 2 .02655 .14224 .23053 .23895 .07457 

x 2 = 0 .04517 .19661 .25 .19661 .04517 

x = .57331 2 .07457 .23895 .23053 .14224 .02655 

x = .84894 2 .09336 .24857 .20986 .11750 .02042 

x = 1.76275 2 .17432 .21689 .125 .05584 .00839 

x = 2.84894 2 .24857 .11750 .05174 .02042 .00286 

x = 5.42669 2 .07457 .01167 .00435 .00161 .00021 

x 2 = 6 .04517 .00664 .00246 .00091 .00012 

1

1

2
1

21

)|1(Pr

)(),|1(Pr

x
xdob

xdG
x

xxdob

∂
=∂

=

=
∂
=∂

∫
+∞

∞−

.07457 .11750 .125 .11750 .07457 

Cutoff points (of x ) 2 (.57331; 
5.42669) 

(-.84894; 
2.84894) 

(-1.76275; 
1.76275) 

(-2.84894; 
.84894) 

(-5.42669; 
-.57331) 
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