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I. INTRODUCTION 
Infant and child mortality in Africa is higher than in any other continent (see Map A). In 
particular, West African countries experience mortality two to three times higher than 
neighboring countries in northern or in much of southern Africa. Still, there is considerable 
heterogeneity within the region.  For example, Niger’s infant mortality rate is more than double 
that of Ghana. Subnationally, even when mapped at a coarse resolution, rates differ by as much 
as a factor of four (see Map B). The countries also show differential trends in levels and age 
patterns of childhood mortality.  Further, while it appears that some countries have experienced 
significant declines in recent mortality (e.g., Niger), others appear to have experienced a 
reversal in a long-term downward trend (e.g., Burkina Faso).1 Due to the inherent complexities 
associated analyzing trends from cross-sectional data, this report will focus on major 
determinants of mortality in the 10 years prior to 1997-2001. Its contribution is a consideration 
of a broad class of spatial covariates.  
 
Several individual and household level factors have been identified as key determinants of 
infant and child survival. These include maternal education (Trussell and Hammerslough 1983; 
Rao et al, 1997; Root 1997; McMurray 1997; Agha 2000) and the pace of childbearing (Boerma 
and Bicego 1992; Rao et al, 1997; Root 1997; Agha 2000; Gupta and Baghel 1999; Whitworth and 
Stephenson 2002). Many studies indicate that environmental or geographic factors also play an 
important role. These include, for example, population density (Root 1997), climate (Ronsmans, 
1995; Curtis & Hossain, 1998; Patz et al, 2000; Pitt and Sigle 1997), disease environment (Root 
1999) and urban residence (Woods 2003). However, few studies have been able to incorporate 
potential environmental factors that are explicitly spatial, that is, derived from geographic 
databases. Spatial variables include simple constructs, such as distances from households or 
communities (e.g., to the nearest clinic or city) and environmental characteristics that have their 
own geographic boundaries (e.g., types of farming system or land cover). Geographic databases 
often provide information (via station measurements, satellites and other sources) that would 
be otherwise too costly to obtain through the survey mechanism. This study makes further 
inroads by incorporating several new or previously hard-to-integrate sources of spatial data.  
 
Until recently, environmental and other geographic data were not readily applicable to analyses 
of childhood mortality.  However, significant improvements are starting to take place.  First, 
spatial data are generally becoming more available, with improved coverage, quality and 
variety.  Second, since late 1996, the Demographic and Health Surveys (DHS) have consistently 
recorded the geographical location of each cluster of surveyed households with handheld 
Global Positioning System (GPS) units. This information at the cluster level permits a linkage 
between DHS determinants of infant and child mortality and information from other data sets. 
 
The primary objective of this report is to explore and draw attention to the effects of a largely 
unexplored cache of environmental information on infant and child mortality.  The underlying 
motivation is to account for some portion of the variance that has not been explained by the 
traditional set of socio-economic and biodemographic determinants of childhood mortality.  
 
A. Rationale  

                                                 
1 Short-term variation in mortality based on survey data needs to be evaluated with caution. This is the subject of an 
ongoing study by Korenromp and colleagues.  
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Mosley and Chen’s (1984) widely accepted analytical framework is based on the assertion that 
socioeconomic factors influence mortality through biological mechanisms, called proximate 
determinants.  The socioeconomic factors in the basic framework include individual, household 
and community-level variables, the latter including macro-environmental factors.   Factors such 
climate, rainfall and soil are especially pertinent to children’s survival in sub-Saharan Africa 
because widespread poverty leaves the population highly vulnerable to fluctuations in the 
availability of food and water, the transmission of infectious and vector-borne disease, and even 
the amount of time a mother spends laboring versus her time devoted to child care (Watson et al 
1997).    
 
This study examines the role of non-biological variables in predicting childhood mortality, with 
an emphasis on environmental and spatially-determined variables.  We control for a variety of 
proximate determinants including several maternal and demographic factors.  Because our goal 
is to infer the causal role of socioeconomic and environmental characteristics, it is beyond the 
scope of this study to analyze the direct, biomedical causes of death such as complications of 
birth, malnutrition, and specific infections such as diarrhea, HIV, and acute respiratory infection.   
These biological causes of death are believed to be correlated with social factors (Cramer 1987, 
Schultz 1993).   
 
B. Evidence from the Literature 
The impact of proximate factors, and socioeconomic and environmental factors acting directly 
or indirectly through them on childhood mortality, has been studied for several decades.  Some 
factors have been examined much more thoroughly than others, and the following review is 
intended to guide the choice of variables for our analysis rather than provide an exhaustive 
overview.    
 
Proximate Determinants    
The proximate determinants of child mortality include maternal and demographic factors, 
nutrition, illness and injury (Mosley and Chen 1984).   Maternal risk factors are more closely 
related to neonatal or early infant deaths because they are associated with premature and low 
birth weight infants and delivery complications.  One of the most important maternal factors 
found to be related to childhood mortality is the pace of childbearing (Rutstein 1984, Hobcraft et 
al, 1985).  In particular, short preceding birth intervals are believed to increase an infant’s risk of 
mortality because the mother’s nutritional reserves have not fully recovered from the previous 
birth.  Short birth intervals may affect the older child as well by creating competition between 
young siblings for the mother’s resources (Boerma & Bicego 1992).   
 
Two other important maternal factors are the mother’s age at birth and the birth order.  Results 
from a proportional hazards model using data from the Malawi DHS show that both of these 
effects are important in determining risks primarily during infancy (Manda 1999).  In sub-
Saharan Africa, where women marry at a young age, first births are associated with very young 
mothers.  Theory suggest that these women’s children carry a higher risk of death because 
young, first parity mothers may not have reached their full physical and reproductive maturity 
(Zenger 1992).  Findings regarding children of older mothers and of high parity vary more, but 
due to increased risk of delivering a genetically impaired birth later in life, these infants are also 
likely to carry higher risks of death (Sullivan et al. 1994). 
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Demographic factors such as male sex (Sullivan et al., 1994), multiple births (Pison et al. 1989), 
and previous child deaths (Mturi & Curtis 1995, Majumder et al. 1997) are associated with a 
high risk of infant death.   Infant boys, especially during the neonatal period, have a higher risk 
of mortality than females.  Early infant mortality is also significantly higher for multiple births, 
mainly because multiple births are most likely to be premature and/or at low birth weight.  If 
more than one birth survives delivery then there is competition for breast milk and the mother’s 
resources.  
 
Nutrition, illness and injury are common proximate determinants of childhood deaths.  
Although these factors are not included in this analysis, they cannot be overlooked as key 
factors in predicting childhood mortality.   Numerous studies examining mortality outcomes 
have researched both mother and child nutritional status as direct or indirect causes of infant 
and child deaths through their relationship with specific diseases (Rice et al. 2000, Onis 2000, 
Rutstein 2000).   
 
HIV/AIDS is a major epidemic in sub-Saharan Africa, not without repercussions on childhood 
mortality.  Adetuji (2000) finds that improvements in under-five mortality are reversed in 
countries with very high adult HIV prevalence (>=5%). At the end of 2001, several West 
African countries in this study had estimated adult prevalence between 5% and 10% (Burkina 
Faso, Côte d’Ivoire and Togo), and Cameroon had a prevalence level of 11.8%.  The remaining 
four countries had estimated prevalence under 5% (Benin, Ghana, Mali, and Senegal) 
(UNAIDS/WHO 2002).  About 25-35% of children born to HIV-positive mothers are also 
infected with the virus, and the median age at death for HIV-positive children in Africa is about 
two years (Boerma et al.1998).  Mortality rates for children of HIV-infected mothers are therefore 
much higher—by two to five times—than children of HIV-negative mothers.   Perhaps even 
more important are the indirect effects of adult HIV on child mortality.  Elevated adult HIV 
prevalence rates also increase the risk of death for HIV-negative infants and children because a 
parent’s death leaves them vulnerable.  The death of an HIV-positive parent or guardian means 
a loss of income and an orphan’s time and energy are likely diverted from school to helping 
maintain the household.  Unfortunately, precise effects of the disease on childhood mortality 
levels are difficult to capture, not only because of these indirect effects, but also because 
children of mothers who died of HIV (as well as other causes) tend to be omitted from 
household surveys.   
 
Socioeconomic Determinants  
Unlike the endogenous maternal and demographic factors that substantially increase an infant’s 
risk of death, the effects of socioeconomic variables are enhanced as the child gets older (Manda 
1999).   The reason usually cited for this is that a greater proportion of child deaths between age 
1 and 4 years are due to exogenous factors over which parents potentially have control.  
Parents’ education, access to health services and the household environment represent a few of 
these factors. 
 
Maternal education has consistently been observed to have a strong impact on child survival 
(Trussell and Hammerslough 1983; Rao et al, 1997; Root 1997; McMurray 1997; Agha 2000). 
Paternal education has also emerged as a significant factor (Majumder et al. 1997).  In part, 
maternal education is positively correlated with using modern health services including 
prenatal care (Shakhatreh 1996).  More education is needed to counteract child mortality than 
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infant mortality, presumably because older children are more reliant on health facilities, clean 
hygiene practices, and a quantity and variety of solid food—factors to which better-educated 
parents are more likely to seek and gain access (Boerma 1996). 
 
The use of health services, especially prenatal and delivery care, which is often a function of 
other socioeconomic factors, also reduces infant mortality (Gaminiratme 1991, Forste 1994, 
Ahonsi 1995).   The use of preventive health services, such as immunization programs, has been 
determined to influence survival later in childhood (Ahonsi 1995, Diamond 1990).  
 
The household environment, measured by factors such as source of drinking water and toilet 
facilities, are important determinants covarying with older children’s chances of survival    
(Woldemicael 2000; Merrick 1985;  Esrey & Habicht 1986).  These factors are important not only 
for their direct effect on child survival, but they may also indicate the overall resource level of a 
child’s family. Poverty in and of itself is a key determinant of infant and child mortality 
(Hussain et al., 1999; Gupta and Baghel 1999). 
 
In addition to socioeconomic factors, cultural factors may influence mortality. Society’s beliefs 
about disease, for example, may result in taboos or ritualistic treatments whose therapeutic 
effects are not supported by modern medicine (Fabrega 1972).  Cultural beliefs may lead to 
breastfeeding practices that are detrimental to the infant’s growth (van de Walle and van de 
Walle 1991, Lesthaeghe 1989).  Basu (1997) contends that behavioral underinvestment may 
underlie the biological determinants of mortality.   Cultural factors such as these and others are 
important in understanding childhood mortality, but because they are difficult to quantify they 
are not explicitly considered in the present analysis. 
 
Spatially-relevant Factors   
Although demographic analyses are almost always place-based, much analysis is spatially 
general. Urban-rural distinctions are common but are nearly always expressed with a 
dichotomous variable. Descriptions of study sites may set the stage for an analysis and assist in 
the explanation of residual effects, but even basic factors, such as population density (which 
might affect disease transmission) or other environmental characteristics identified in Mosley 
and Chen’s frequently tested framework (1984), are not often considered in the formal analysis 
of mortality.   
 
Urban residence is one of the most commonly identified factors in mortality variation, and the 
main reasons given for its importance in contemporary developing countries are spatial. Urban 
residents (and, just as importantly for disease transmission, their neighbors) have greater access 
than their rural counterparts to resources such as health services, clean water, sanitation, and 
education.  Entwisle et al. (1997) consider a spatially sophisticated measure of nearness to 
resources.  Using a network analysis of data on roads, they find significant relationships 
between contraceptive choice and accessibility to towns and health centers.  Specifically, travel 
time effects are important even at short distances, and road composition plays a part in method 
selection. 
 
Urban areas also have higher population densities, making it easier to share information and 
resources. In a recent article, Woods (2003) argues that mortality varies along the urban-rural 
continuum, rather than between discrete urban and rural environments, and that at least in the 
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past in Europe the rural end of this continuum favored survival. He suggests that future 
analyses of urban-rural differentials in mortality should focus on mortality in childhood, which 
“appears to be highly sensitive to differences in population density” (p. 43).  Defo’s (1994) study 
of child survival in Cameroon using longitudinal data finds that overcrowding has deleterious 
effects on both infant and child survival (Defo 1994).  Nevertheless, Woods (2003) recommends 
distinguishing between infant and child deaths, in part because “an excess of the latter may be 
found especially in urban centers and at times before the medical control of childhood diseases 
became possible” (p.43).   
 
Using a fairly coarse but non-binary measure of urbanness, Gupta and Baghel (1999) find that 
urban residence is an important factor in infant mortality.  Mortality in the slums was found to 
be higher than in other parts of urban areas, but the rates in slums were more favorable than in 
rural parts of India.  Further, mortality was found to be higher in the slums of major cities than 
in smaller metropolises.   
 
Other recent work has shown the importance of spatial disaggregation.  Root (1997) contends 
that population density is an important factor in spatial patterns of child mortality in Zimbabwe, 
although his test of this hypothesis is crude; he divides the country at a coarse level into high- 
and low-density regions.  In his study of West Africa and East/Southern Africa, Root (1999) 
sought patterns at the level of the DHS survey region. These typically consist of first level 
administrative units or aggregations thereof.  Root found important subnational patterns, and 
suggested that those patterns should be analyzed in connection with population density and 
vector habitat data, key factors in the transmission of infectious diseases. 
 
The development of the Small-Area Estimation Technique (Elbers et al. 2003) has enabled 
researchers in several countries to combine low spatial resolution household survey data with 
high-resolution census and physical data in order to estimate health and economic indicators at 
high resolution.  Specifically, Fujii (2002) and Fujii et al. (2002) have combined Cambodian 
census data with spatial data including land use, agricultural production, climate, vulnerability 
to flooding, distances to rivers, roads, towns, cities and health facilities to generate estimates of 
poverty and malnutrition with acceptable standard errors for most communes.  However, 
because the spatial data are used to estimate the demographic indicators, the two classes of data 
cannot be compared statistically. 
 
Lastly, demographic analysis has long been concerned with the relationship of population 
dynamics and agricultural production (Malthus 1798, Boserup 1965). Several recent studies 
have shown the importance of spatially-specific climatic factors on health and mortality 
outcomes (NRC, 2001): climate is of potential interest because it incorporates factors affecting 
agricultural production and disease transmission (through vector, water and air borne 
mechanisms). Curtis & Hossain (1998) examines the effect of aridity on child malnutrition, and 
find it to be a significant predictor of wasting (see next section).  Findley et al. (2002) find that 
the incidence of infectious diseases is closely linked with rainfall in Mali: malaria is most 
prevalent one to two months after peak rainfall, and acute respiratory infections peak in dry 
months.  Quantitative work has received support from in-depth qualitative work. For example, 
Adams (1994) and colleague (Sauerborn and Adams 1996) find complex connections between 
climate anomalies, household food security and the health and nutrition of household members 
in rainfall-dependent agricultural communities in Mali.  Pitt and Sigle (1997) find that seasonal 
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variability in rain may cause problems in smoothing income and resource distribution across 
seasons, ultimately compromising the wellbeing of children in Senegal.  This effect is magnified 
in rural areas, where households are often more vulnerable to environmental shocks than urban 
households.  Numerous studies have shown seasonality in the incidence of diarrhea (e. g. 
Muhuri 1996, Armah et al. 1994).  These climatic variables, while intrinsically spatial, are often 
specified as only time-varying.   
 
C. DHS Experience with Spatial Data at the Cluster Level 
DHS data were first used in regional highly spatially disaggregated form in the West Africa 
Spatial Analysis Prototype Exploratory Analysis (WASAP) program.  WASAP studies analyzed 
differences in demographic and health indicators across social and ethnic borders and aridity 
zones.  Curtis and Hossain (1998) used WASAP data to consider the effects of aridity, 
population density, agricultural production and market tension (a theoretical measure of the 
“pull” of local and international markets, based on agroclimatic and infrastructure data) on 
child malnutrition.  Controlling for correlates from the DHS data (maternal education, birth 
order, age, incidence of diarrhea), only aridity and non-food crop production were significant 
predictors of wasting, and only market tension was a significant predictor of stunting.  Saha 
(1998) linked increases in market tension and level of market tension and economic diversity 
with knowledge and use of modern methods of family planning.  
 
Expected gains from current approach 
The current data mark an improvement over WASAP in several respects.  First, the cluster 
locations have been geocoded more consistently, using handheld GPS units.  Second, the 
component surveys were carried out over a shorter time interval (five instead of ten years).  
Lastly, the increased availability of spatially explicit physical and population data allows for 
analysis with a wider range of variables at higher resolution.  For example, WASAP took its 
population data from an agricultural census covering approximately 425 units in 19 countries.  
The current study uses population data for over 1200 units in the ten survey countries. 
 
2. DATA AND STUDY DESIGN 
The analysis is based on DHS data and linked information from a variety of spatial data sources.  
DHS data analyzed in this report are drawn from the ten most recent georeferenced surveys in 
West Africa:  Benin, Burkina Faso, Cameroon, Côte d'Ivoire, Ghana, Guinea, Mali, Niger, 
Senegal, and Togo (see Map C).  Since data collection was carried out within a relatively short 
period of time, 1997 to 2001, period effects on mortality experience were minimized.  Surveys 
were also conducted in this time period in neighboring Nigeria, Gabon, and Mauritania, but 
they did not include the georeferenced cluster data necessary for locating respondents 
accurately. 
 
Data on 122,389 children from the selected surveys who were born during the ten years before 
the respective dates of interview were pooled into one data set.  Since we are interested in 
exposure to death up to the fifth birthday, about half of the cases were right-censored in the 
calculation of child mortality.2Surveyed births are located in 2771 clusters across the ten 

                                                 
2 Right-censoring refers to those cases whose observed time is truncated before their fifth birthday.  We have only 
partial information, that is, we know that they survived until at least the time of the interview. 
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countries.  The locations of these clusters were recorded at the time of the survey using GPS 
devices (see Map D). 
 
A. Adjusted Weights 
All of the DHS surveys used in this report are nationally representative.3  The sample design is 
a probabilistic two-stage sample, where enumeration areas (EAs) are randomly selected with 
probability proportional to their size.  The households within the selected EAs are randomly 
selected with equal probability, and sampling weights are assigned to individuals.  A thorough 
review of sampling methodology is presented in the DHS Sampling Manual (DHS, 1996). 
 
For this analysis, information on the 122,389 children described above was pooled into one data 
set.  Because of large differences across country populations and sample sizes, the sample 
weights in the pooled data set needed to be rescaled in order to represent the ten countries in 
proportion to their populations. For example, the births in the Côte d’Ivoire sample in the ten 
years prior to that survey represented only 0.06% of all the births in that country in the same 
time period. The births in the Togo sample in the ten years prior to that survey represented 
0.71% of all the births in that country in the same time period.  An expansion weight was 
calculated for each country and then multiplied by the original sample weight.  The weights 
were then re-normalized to average to one across the pooled sample.  The new weights were 
applied in the analysis. Because of our primary interest in spatial clustering, we have not 
adjusted for maternal clustering.  Subsequent analyses could account for associations between 
siblings. 
 
B. Data Quality  
The main issue concerning data quality is that the age at death data, reported in months, shows 
considerable heaping at 12 months.  Some of the deaths reported at 12 months may have 
actually occurred at 10, 11, 13, or 14 months.  The interpretation of this response can be 
important for the estimation of infant mortality, in particular.  To the extent that deaths at 10 or 
11 months were misreported as 12 months, heaping will result in a an underestimate of infant 
mortality. Heaping of age at death at 12 months happens to some extent in all DHS surveys due 
to respondent or interviewer error.   
 
The amount of heaping at 12 months may be measured by dividing the number of deaths at 12 
months by the average number of deaths at months 10, 11, 12, 13, and 14 (Curtis 1995).  In this 
study, this heaping index was 2.8.  It ranged from 1.5 in Niger to 4.2 in Guinea.   Overall, this 
implies that unadjusted infant mortality rates are underestimated by about two percent.  
Conversely, because there are fewer death in the 1 to 4 years age group, the corresponding 
unadjusted child mortality rates are overestimated by slightly more than two percent. 
Because there is no way to accurately redistribute individual deaths by changing the age at 
death, and because the adjustment would not significantly influence the relative rates of 
mortality of interest in this study, no adjustment was made for heaping in this report. 
Nevertheless, we have taken steps to avoid an ambiguity in the interpretation of `month’ that is 
sometimes overlooked.  Following the usual convention when age is reported in years, we 
assume that age at death in months means completed months of age.   Therefore, in order to 
                                                 
3 The Mali and Niger surveys exclude remote populations, totaling 2.6 and 4.7 percent of their populations, 
respectively.  Details follow in the section on the aridity variable, which is most likely to be affected.  Residents of 
refugee camps were not surveyed in Guinea. 

DRAFT ** Not for circulation or citation ** DRAFT 



Spatial Analysis of West African Child Mortality  9/24/2003, p. 10 

estimate exact age at death, 0.5 months was added to each age reported in months.  By this 
reckoning, for example, `12 months’ becomes 12.5 months, which is clearly past the first 
birthday. 
 
C. Measures of Infant and child mortality 
DHS estimates of infant and child mortality rates are direct methods based on birth histories.  
They are period-specific rather than cohort-specific, meaning that children of a particular age 
were exposed to the risk of death during a five-year time period prior to the survey date--but 
not necessarily the five years immediately prior to the survey.  See Sullivan et al. (1994) for a 
detailed discussion on DHS childhood mortality estimates.  Period-specific rates are synthetic 
cohort probabilities in which children of different birth cohorts contribute to the mortality 
experience of different subintervals of age.  The advantage of calculating a synthetic rate is that 
in using partial survival time information at the date of interview, we have estimates for the 
most recent time period, rather than for only for children who have been observed for the full 
period of interest.   Table A shows infant and child mortality rates for the early 1990s and the 
late 1990s for countries selected for this report. 
 
Two standard measures of child mortality are 1q0, the probability of dying in the first year of 
life, and 4q1, the probability of dying during ages 1-4, given that the child survived the first 
year.  The Infant Mortality Rate (IMR), when divided by 1000, is equivalent to 1q0.  The 
probability of surviving to age five can be expressed as (1-1q0) x (1-4q1). The analysis in this 
report is based on estimates of 1q0 and 4q1.  
 
D. Geographic data 
Using GIS software, geographic data were assigned to cluster locations, which were in turn 
appended to household, maternal and child data from the DHS surveys. Over the past decade, 
more GIS software is becoming more accessible to social and health scientists, and geographic 
data are becoming increasingly available in formats that may be integrated with georeferenced 
survey data.  Nevertheless, integration remains a non-trivial undertaking and therefore 
geographic variable must be selected with care.  
 
Using the newly updated Gridded Population of the World (version 3, alpha), population 
densities (in the year 2000) were recorded for each cluster location, and calculated for the area 
within a 10 and 30-kilometer radius of each (CIESIN 2003; see Map D).  The GPW database 
reallocates population estimates from the census units in which they were collected (roughly 
1200 for the 10 countries in the study) to a 2.5-minute quadrilateral grid, a format easily overlaid 
with the DHS cluster points (see Table C).  Distances were calculated to the coast (using the 
Digital Chart of the World’s coastal boundary data) and the nearest populated places of 20,000 
and 50,000 residents, coded both as point locations and as urban extents of finite area (Balk et al. 
2003; see Map E). Similar to GPW, the database of populated settlements uses census data 
which is assigned to urban polygons as delineated by the Night-time Lights dataset (Elvidge et 
al. 2001) and a few other sources as the lights are of inferior quality in parts of Africa (Balk et al. 
2003). All of the above variables were calculated a second time ignoring any part of the above 
area that was on the other side of a national border.   
 
Farming system (Dixon et al. 2001, see Map F), arid zone (WRI 2002, UNEP 1997, see Map G), 
average rainfall (CRU n.d., New et al. 1999, see Map H), growing season (Fischer et al. 2000, see 
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Map J) and an index of malaria risk (Kiszewski et al., forthcoming) were calculated at each 
cluster point.  Each of these observational datasets were developed for application in 
agricultural, climate or other research areas, but due to the common GIS format and scale, they 
are appropriate for integration with the DHS data. A full list of geographic variables appears in 
Table C, and is described in detail below. 
 
3. METHODS 
To describe differences in mortality by single variables we undertook a survival analysis using 
the Kaplan-Meier (product-limit) method.  This method tracks the age pattern of mortality 
within the first year of life and within the next four years for selected covariates.  For the 
multivariate analysis, we used a generalized linear model to fit 1q0 and 4q1.  Each method is 
described in detail below, following a description of the covariates.   
 
A. Variable Selection 
Table B shows mean values or proportions of the variables included in the analysis for the 
sample as whole and within each of the ten countries in the study. These variable sets form the 
basis of the models in the multivariate analysis.  
 
Control Variables [Model 1] 
Country and birth cohort are included as control variables.  In the multivariate analysis below 
Ghana, with the lowest mortality, is selected as the reference country.  The ten surveys were 
conducted within a five-year span, and in each country we focus on the births during the ten 
years prior to the survey.   The years of birth in the pooled data file range from 1987 to 2001.  As 
a partial control for period trends in fertility, we broke this range into three five-year intervals: 
1987-1991, 1992-1996, and 1997-2001. We recommend caution in the interpretation of 
differentials and coefficients for the ten countries and the three cohorts.  Country and cohort are 
likely to represent the net effect of many unmeasured influences that vary across countries and 
time.  Moreover, they are somewhat confounded, simply because the surveys were not 
conducted at the same time. 
 
Proximate Determinants [Model 2] 
The child’s sex, birth order, and multiple birth status were included. Guinea had the highest 
proportion male children, 51.4%, with a study average of 50.5%.  Multiple births, accounting for 
3.6% of all births, were more much more common in Benin (5.8%) and Togo (4.9%). Mothers’ 
age at birth was also included: Ghana, Togo and Senegal (with the lowest fertility among the 10 
countries) have relatively small shares of younger mothers and relatively large shares of older 
mothers.  
 
Birth spacing was not explicitly included, even though many studies have shown that when 
birth intervals are short, i.e. less than two years, both the child at the beginning and the child at 
the end of the interval are more likely to die.  (This effect is due to the competition for maternal 
time and resources—similar to the competition between the children in a multiple birth, an 
included variable.)  In our preliminary analysis we found that much of the effect of birth 
spacing is captured by birth order.  A high proportion of the births are first births, and they 
have no preceding birth interval.  We were also concerned by the censoring of the subsequent 
birth interval, a result of our focus on recent births.  Lastly, there are endogenous or feedback 
effects because an early child death can tend to shorten the subsequent birth interval.  Rather 
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than divert attention from the primary concern of this study, we decided to avoid the 
measurement and modeling issues that would have been raised by the inclusion of the prior 
and/or subsequent birth intervals.    
 
Spatial Variables [Model 3] 
The spatial variables included here fall primarily into two types: those describing an urban-
rural continuum, and those describing climatic parameters. 
 
The classic urban-rural indicator is the usual dichotomous classification given during the 
enumeration phase of the survey implementation.  The two additional measures considered are 
average population density within 30 kilometers, and the distance to the nearest populated 
settlement of 50,000 persons or more (Balk et al. 2003), described above.  We used a buffer of 30 
kilometers in order to smooth differences in the density of population information, as well as in 
the diffusion of surveyed household around a given cluster point.  A DHS survey cluster is a 
representation of groups of households whose boundaries may or may not coincide with  a 
census enumeration unit. In rural or sparsely populated areas density within these clusters may 
be quite diverse. Fifty thousand was chosen as the city population threshold because data on 
cities of that size are more consistently available that for smaller cities.  All spatial indicators 
were chosen ignoring national boundaries in determining the 30-kilometer radius and the 
nearest city.  While borders have obvious political and economic effects, they are less likely to 
impede disease vectors.  The effect of specific borders is an open question beyond the scope of 
this report. 
 
Twenty-four percent of the births were in urban areas; but the average population density of 
urban births is 665 persons per square kilometer.  One thousand persons per square kilometer is 
a conventional minimum for urban areas, although perhaps more applicable to North America 
and Europe than Africa (Rain, n.d.). 
 
Additionally, a variable for the shortest distance to the coast is included. This variable has been 
shown to be an important correlate of economic development (Sachs et al, 2001) as a proxy 
variable for access to goods and services on the global market, trading potential, and so forth. 
We included it to determine whether there is evidence for a similar effect on mortality. As Table 
B indicates there is considerable variability in the national averages of this variable. 
 
We have adopted several measures of climate in part because no single measure is expected to 
capture the inherent complexities. We explored five  measures—rainfall, aridity, farming 
systems, length of growing season, and the stability of malaria transmission. Theory suggests 
that excess dryness or wetness will increase the risk of mortality.  In dryer areas, increases in 
rain will be expected to improve child survival by providing sources of water, inputs to 
agricultural production, and improved sanitation. In wetter areas, excess rain may reduce crop 
yield (due to pests present only in very wet areas) and provide a more fertile vector habitat.  
 
Rainfall, as shown in Maps H and I, clearly has wide temporal and spatial variation in this 
region.  Two regimes are most prominent.  In most of the survey region August is the wettest 
month.  In southern and central Côte d’Ivoire, Ghana, Togo, Benin and Cameroon, there are two 
rainfall peaks – one in May/June, and the second in August/September.  January/December is 
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the driest period in nearly all areas, though similarly low rainfall extends from November to 
March in Burkina Faso, Mali, Niger, and Senegal.  
 
Aridity, another measure of dryness, combines precipitation and evapotranspiration rates into 
distinct classes. However, aridity zones proved to be too problematic to use.  Nomadic 
populations in Mali and entire arrondissements and the rural population of other arrondissements 
in Niger were excluded from the sampling frame. This is noteworthy because these areas 
contribute disproportionately to the population of arid and hyper-arid zones. Only four 
countries contribute to the arid and hyper arid zones, and disproportionately respondents are in 
Mali. Mali is the only country contributing to all four zones, and four countries contribute to 
only two zones (Guinea, Niger, Burkina, and Côte d’Ivoire). Additionally, aridity is highly 
correlated with rainfall (-0.79), such that inclusion into the model with rainfall would 
overspecify it. Although we did some preliminary analysis of this variable, we omit it from 
further treatment here due to the sampling concerns and availability of substitute measures.  
 
Farming systems, delineated in Dixon et al. (2001), provide an indication of the likely potential 
of the agro-climatic zone.  Delineations are coarse, however, and cannot be considered accurate 
sources of food supply or employment types for surveyed households or those of their 
communities.  Preliminary analysis with a limited model including all ten farming systems 
present in the study region; consequently two systems, coastal artisanal fishing and tree crop, 
showed the strongest relationship with mortality. 
 
The length of the growing season has long been associated with agricultural productivity (FAO 
1978). Seasons of  fewer than 70 days are considered too short for sustainable agriculture, and 
long seasons, of greater than 300 days, are considered not optimal because the excess rain 
fosters pests that damage crops. The range of 120-240 days is considered good, with 240-300 
days being considered optimal. The variable is so highly correlated with rainfall, at 0.84, that we 
could not add it to the multivariate model while also controlling for rain.  
 
One further variable, closely related to climate, was an index of the stability of malaria 
transmission (Kiszewski et al., forthcoming).  However, because the majority of inputs to the 
index are at a relatively coarse resolution, it interacted too strongly with the country variable 
and was therefore omitted from the main models. 
 
Variables associated with land cover and land-use were also omitted. These variables might 
include land cover classification or land use and vegetation indices (e.g., Normalized Difference 
of Vegetation Index, NDVI).  Such variables might serve as proxies for vector habitats and 
ecological factors influencing agropastoral economic life.  Several possible datasets were 
considered for use, but all were too complex to be introduced in a systematic and rigorous way 
in the short term.  Thus, rain and selected farming systems were the only variables ultimately 
selected for inclusion in the multivariate model.   
 
Socioeconomic Variables [Model 4] 
Socioeconomic variables included in the analysis reflect the household environment and the 
household assets.  The distinction between household environment and assets is somewhat 
arbitrary since the environmental characteristics may also be heavily influenced by assets—that 
is, a household’s ability to purchase higher quality water, sanitation, and flooring, or the 
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community’s capacity to improve public infrastructure e.g., to provide safe water and sewer 
services. The distinction is maintained nevertheless because these environmental characteristics 
are often somewhat exogenous to the household (e.g., community-level services) and because 
they may directly mediate vectors of disease transmission or otherwise measure of level of 
contamination in the child’s home environment. Household environment variables included in 
the analysis were the source of drinking water, type of toilet, and type of flooring.  Piped water, 
modern toilet facilities and finishing flooring are believed to improve chances of survival by 
minimizing contamination.  Their effects are expected to be significant especially for older 
infants and children who are more exposed to them by drinking the water, crawling or playing 
on the floor, and using the toilet.  The effects for the latter may also affect young infants by 
indirect exposure to contamination via the mother using unsanitary toilet conditions.  
 
Household assets in the model include electricity, radio, television and fridge.  These are an 
indicator of the socioeconomic status of members within the household.  Households with 
higher socioeconomic status (more assets) are believed to have a positive impact on infant and 
child survival.  We experimented with combining them into a single assets index but found it 
more informative to retain separate variables. As expected, households more frequently 
possessing these assets were also ones where women had a higher average level of education.  
The exception was radio, where the majority of households possessed one regardless of 
education level of the mother. 
 
Data on the mother’s current partner’s education and occupation, although important 
socioeconomic indicators, were omitted from the analysis because the information was either 
not available or not comparable for all countries included.   Similarly, while mother’s marital 
status (including informal union) is an important predictor of mortality, it was not included 
because it was limited as measure of reported current status, for which we found very little 
variation. 
 
Omitted Variables 
Other potentially important types of variables are omitted from this study, notably on 
nutritional and health status.   While information on breastfeeding and young infant feeding are 
collected in the DHS surveys, it is only for a subsample of children born three years prior to the 
survey.  Likewise for anthropometric information, only for a subsample of children born five 
years prior to the survey are height and weight measurements recorded.   Similarly, basic health 
information concerning recent episodes of diarrhea, cough and fever are available for a 
subsample of children under age five at date of interview.  As stated earlier, study includes a 
much larger sample of children born ten years prior to the survey.  Furthermore, these nutrition 
and health data are collected only for children currently alive, clearly important determinants 
missing for children who died.  
 
Analyzing the risk of malaria transmission to child survival is limited to a bivariate examination.  
It could not be considered in the full multivariate model due to issues of multicollinearity and 
specification. No other disease transmission factors are considered due to data constraints. 
 
B. Survival Models 
An analysis of selected survival functions served to model the distribution of deaths over time 
stratified by selected covariates.  The nonparametric Kaplan-Meier (product-limit) method was 
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used to generate maximum likelihood estimates of S(t), the probability that death occurs at an 
age greater than t. 
 
Survival distributions were generated using SAS 8.2 Lifetest procedure.  By incorporating 
information on age at death, the distribution curves demonstrate the differential pace and level 
of mortality for infants and children.  DHS data provides age at death in months for children 
under age 24 months, and in years for older children. A quantitative evaluation of the stratified 
survival curves at age 12 months (for infants) and 59 months (for children) highlights the 
cumulative impact of these factors on the two age groups.  
 
We stratified survival distributions by selected factors hypothesized to influence childhood 
mortality. The survival distribution estimates can be easily compared visually or by the log-
rank statistics that adjust for stratum scores and which test for homogeneity of strata.  The 
survival curves reveal initial confirmation of expected findings from both individual level 
factors, such as maternal education, and environmental variables, such as population density. It 
is important, however, to recall that in this part of the analysis no other factors have been 
controlled.   An analysis of the independent effects of these factors on infant and child mortality, 
i.e. controlling for an ensemble of other determinants, is presented subsequently. 
 
C. Generalized Linear Model 
For the multivariate analysis, we used a generalized linear model (GLM). This technique (cf., 
McCullagh and Nelder 1989) is very similar to a hazard model or a survival analysis (cf., 
Namboodiri and Suchindran 1987) but produces coefficients that are more analogous to the 
usual 1q0 and 4q1. The computer analyses were done with the glm procedure in Stata, versions 
7 and 8.  A brief description of the modeling strategy follows, as implemented for infant 
mortality; similar logic applies to deaths to children ages 1–4. 
 
At the level of the individual child, we define a binary outcome, died0, coded 1 if the child died 
before reaching exactly twelve months (one year) of age and 0 if it survived.  We also code a 
measure of exposure to the risk of dying, called time0, which can be between 0 and 1.  If the 
child was observed to die any time in the first year of life, or was observed to survive the full 
first year, time0 is coded 1.  However, if the case was censored, i.e. the child was born during the 
year before the survey, and was still alive at the time of the survey, then time0 is the fraction of 
the year for which the child was observed.  Then, for a given sample of children, the standard 
estimate of 1q0 will be equivalent to the sum of died0 for those children, divided by the sum of 
time0.   
 
An individual-level statistical model that gives this same estimate will be a generalized linear 
model with outcome died0, a binomial error distribution with binomial denominator time0, and 
a log link function.  When this model is run with no covariates, the output will produce a 
constant which, if exponentiated, will be the estimate of 1q0.  When covariates are included, the 
exponential of the constant term will be a fitted 1q0 for the reference combination of the 
covariates. The exponential of a coefficient for a covariate will be the relative risk for that 
covariate.  For example, Table D gives the coefficients, before and after exponentiation, for the 
covariate “Country”, a categorical covariate; the reference country is Ghana. 
 

DRAFT ** Not for circulation or citation ** DRAFT 



Spatial Analysis of West African Child Mortality  9/24/2003, p. 16 

In table D, all numbers except those in the last column come directly from the (Stata-generated) 
computer output.  The last column is obtained by exponentiating the first column.  The 
exponentiated constant term, 0.0605, is the estimate of 1q0 for Ghana, the reference (or ‘omitted’ 
country).  It is equivalent (when multiplied by 1000) to an Infant Mortality Rate (IMR) of 60.5 
deaths per 1000 births.  The report on the 1998 Ghana survey (GSS 1999, p. 83) gives an IMR of 
56.7 for 0-4 years before the survey and 65.8 for 5-9 years before the survey.  Our estimate of 
60.5 for 0-9 years before the survey is consistent with those values. The exponentiated 
coefficient for Burkina Faso, for example, is 1.7664, meaning that its 1q0 is 0.0605 x 1.7664 = 
0.1069.  This 1q0 is about 77% [(1.7664 – 1) x 100 = 76.64)] higher than the 1q0 for Ghana. 
 
In the tables, ‘**’ after an exponentiated coefficient indicates that it is significantly different from 
zero in a two-tailed 0.01 test or one-tailed 0.005 test; ‘*’ indicates significance at the two-tailed 
0.05 or one-tailed 0.025 level, and ‘#’ indicates significance in a two-tailed 0.10 or a one-tailed 
0.05 level.  We use the ‘#’ symbol and refer to one-tailed tests because many potential 
hypotheses about mortality differentials are indeed one-tailed rather than two-tailed.  
Significance levels are determined from the ‘z’ column of the computer output (the ratio of the 
coefficient to its standard error), and describe the significance of the difference from the 
reference category. 
 
We have used a log probability model because of the familiarity of 1q0 and 4q1 to all 
demographers, but some analyses of infant mortality use logit regression, another generalized 
linear model.  In logit regression it is the logit of the probability of a death, rather than the log of 
the probability, that is linear in the predictors.  In logit regression, exponentiated coefficients are 
interpreted as relative odds, rather than as relative risks.  Hazard or survival models are linear in 
the log and are also similar, but in those models the probability of death refers to an 
instantaneous rate of change in the survivorship function, rather than the change from exact age 
0 to 1 and from exact age 1 to 5.   
 
For all of these models, the estimated probabilities of dying must be less than one for every case.  
Logit and hazard models are constructed in such a way, through the logit link and the 
instantaneous rate of change, respectively, that this condition is always satisfied.  In our data, 
the maximum predicted probability of dying is always less than one (the maximum is about 
0.80), but this is an empirical result and for other data sets or age intervals the log link function 
might not be usable. 
 
4. RESULTS   
In general, we anticipate that the risks an infant faces during birth and the first month of life are 
very different from those faced after this period.  Infant deaths are more closely linked to 
endogenous factors that are difficult to prevent (e. g. congenital malformations, hereditary 
diseases, and low birth weight).  Older children are more likely to die of preventable diseases, 
including infectious diseases and malnutrition.  This is because they are more mobile, and in 
interacting with their environment they are more exposed to contamination in the air, water 
and food. For these reasons, we anticipate that proximate factors act more strongly on infant 
mortality, and that socioeconomic and spatial factors act more strongly on child mortality. 
 
The survival curves paint a clear bivariate picture of mortality differentials (shown in Figures 
A-J and in Table E) confirming this. The multivariate analysis that follows paints a clear but 
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somewhat more complex picture.  Overall, there is confirmation of conventional factors and 
support for inclusion of many of the spatial factors. 
 
A. Survival Analysis 
Table E provides a summary of the Kaplan-Meier estimates for strata in each covariate.  With 
the one exception of the sex of children aged 1–4 years old, strata for all variables shown here 
have significantly different survival functions. 
 
Among the most important proximate determinants that influence child survival are the 
mother’s age at birth and the birth order of the child (Sullivan et al. 1994).   These maternal 
factors have a differential impact on infants and children: deaths of infants born to mothers 
under 20 years old occur quickly, in early infancy; the impact of young motherhood is less 
dramatic for children ages 1-4 years (Figure A).   Birth order is highly related with mother’s age 
at birth.  In sub-Saharan Africa this is due in part to the early age of marriage and consequently 
the onset of childbearing at a young age.   Similar to infants of young mothers, first births are 
less likely to survive infancy than higher order births.  Likewise, the impact of birth order on 
survival is greatly reduced for children age 1-4 years (Figure B).  Multiple-births face a much 
higher risk of death, especially during infancy (Figure C). 
 
Maternal educational has been observed to have a strong impact on child survival.  Unlike the 
maternal factors that have a differential impact on infant and child survival, education is a 
socio-economic characteristic that influences both age groups.  Infants and children of mothers 
with no education both have only an 89% chance of survival at 12 months and at 59 months 
(Figure D).  Infants and children of mothers with secondary or higher education have greatly 
improved chances of surviving, 95% and 97%, respectively. 
 
Infants and children residing in urban areas have, on average, better survival chances than 
those in residing in rural areas. This advantage is usually assumed to be related to better 
infrastructure and access to services.  When the survival curves of residence are overlaid with 
population density classes, the subtleties often disguised by the dichotomous urban/rural 
variable are exposed (Figure E1). While it is still clear that infant mortality is higher in rural 
areas than in urban areas, within rural areas is a density continuum revealing that infants living 
in the most sparsely populated areas (less than 25 inhabitants per sq km) suffer the lowest 
probability of survival. These very sparse areas may have the least adequate infrastructure to 
support prenatal and delivery services. Similarly, although infants generally enjoy greater 
chances of survival in urban areas, for infants who live in the most densely populated areas 
(more than 1000 persons per square km) their survival chances appear to be compromised.  This 
is likely to be a reflection of overcrowded or slum conditions, where similar to remote rural 
areas services would be inadequate (Woods 2003, Gupta 1999, and Defo 1994).  
 
Compared to infants, the survival pattern of children reveals a continuum of population density 
that is more closely clustered around rural residence (Figure E2). This suggests that if children 
survived infancy in the most sparsely population areas, then despite the measure of sparseness 
they are equally likely to survive to their fifth birthday.   Children in the sparsest settings, 
although carrying higher risks of mortality than children in urban, more densely population 
areas, still enjoy better chances of survival than infants in the sparsest settings.   For both infants 
and children, mortality increases monotonically the further one resides from an urban area 

DRAFT ** Not for circulation or citation ** DRAFT 



Spatial Analysis of West African Child Mortality  9/24/2003, p. 18 

(Figure F).  The negative effect of the highest densities on infants does not have a parallel in the 
distance measure, perhaps because the highest density areas cannot be distinguished 
form slightly lower density areas within urban areas. 
 
Variation in average daily rainfall has a larger impact on children age 1-4 than on infants.  One 
explanation for this is that their dietary needs are much more varied and dependent on 
agricultural production than for an infant who breastfeeds.   Figure G shows that for children 
living in areas with less than 2 ml of average daily rainfall, the probability of survival after 59 
months is 86.5 percent.  In comparison, children living in areas with more average daily rainfall 
stand a 92-93 percent chance of surviving after 12 months.  Figure H shows similar patterns for 
the length of growing season on infant and child survivorship, with the lowest survival rates for 
the children living the arid and semi-arid zones, that is, those with the shortest (less than 3 
months, and 3-4 month) growing seasons. Even children in the main agricultural band of 4-8 
months have lower chances of survival than children in the most sustainable regime (8-10 
months).  The effect on infants is weaker, with the least advantaged growing season (i.e., the 
arid zone) clearly standing apart from the others.   
 
Malaria transmission factors are another significant factor in child survival. We stratify the 
malaria stability index into three categories corresponding to the 20% highest and lowest 
percentiles, and the remaining middle 60% of transmission likelihood (Figure I).   The impact is 
in the expected direction for both age groups, that is, the stratum with a high transmission 
index has a faster pace of mortality than the low and medium groups.  However, the impact of a 
high transmission index appears to be more intense for children age 1-4 years than for infants 
perhaps because older children are more likely to be exposed to repeated malarial infections 
that contribute to the development of other diseases that increase the risk of death, such as 
severe anemia (Slutsker et al. 1994, Menendez et al. 2000).  Further analysis is needed to 
determine if this trend persists when other factors are controlled, which for reasons detailed 
below, we cannot undertake here.   
 
B. Generalized Linear Model  
Tables E and F present the results from a series of five GLM or log probability models applied 
to ages 0 and 1-4, respectively.  The variables in the five models may be summarized as follows. 
 
Model 1:   Country and Time Period.  This is a baseline model; Country and Time Period are 

largely interpreted as control variables and are included in all subsequent models.  
There is wide variation in the coefficients in this model, and one goal of the 
subsequent models is to explain or reduce this variation. 

 
Model 2:   Model 1 plus four demographic characteristics of the child and mother: Sex, Multiple 

Birth, Birth Order, and Age of Mother.  These four variables are included in all 
subsequent models, and as expected their coefficients are quite consistent across 
models. 

 
Model 3:   Model 2 plus household characteristics.  These include Source of Water; Type of 

Toilet; Type of Floor; whether the household has Electricity, Radio, Television, 
Refrigerator; and Mother’s Education.  These would be the standard kinds of 
variables in a model for infant or child mortality.  Note that this model does not 
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include the Urban/Rural classification, which is available in the DHS data but which 
we regard as a spatial variable.  

 
Model 4:   Model 2 plus spatial characteristics.  These include the Urban/Rural classification, 

Population Density (taken as the natural log thereof), Rainfall (both linear and 
quadratic terms), Distance to Coast, and a three-category version of Farming System. 

 
Model 5:   Model 3 plus spatial characteristics.  A comparison of this model with Model 3 

provides our best evidence of the additional explanatory value of spatial variables, 
above and beyond the standard model. 

 
We now turn to a systematic discussion of the results in Tables E and F. 
 
Discussion 
In Table E, which gives the models for age 0, the country effects (expressed as ratios to Ghana’s 
infant mortality) largely become insignificant after the household and spatial characteristics 
have been included.  In Model 1, eight countries have significantly (at the 0.01 level) higher 
infant mortality than Ghana, but by Model 5 only three countries meet this criterion: Côte 
d’Ivoire, Mali and Niger.  Most of the change can be attributed to the addition of the spatial 
variables, as can be seen by comparing model 4 with model 2 or comparing model 5 with model 
3.   The countries that change the most with the addition of these variables—that is, the 
countries whose higher mortality can be most strongly attributed to unfavorable spatial 
characteristics—are Burkina Faso, Cameroon, Guinea, Mali, and Niger.  The effects for time 
period are small in all models, although the second time period achieves a low level of 
significance on some models. 
 
The proximate determinants behave in ways consistent with well-established effects in the 
literature. In all models, males have about 17% higher mortality than females, children in 
multiple births are about 3.5 times as likely to die as singletons; second and later births have a 
risk that is 10% to 20% less than first births; and children born when the mother is age 20 or 
above have a risk that is 25% to 30% less than when the mother is less than age 20.   These 
differences are all highly significant, but are regarded mainly as controls here. 
 
The eight household-level variables appear in models 3 and 5, and their coefficients are almost 
identical in those two models, although they are closer to unity in model 5 because of some 
association with the spatial variables.  Source of water is not significant; type of toilet is highly 
significant, with a flush toilet being by far the most beneficial category;4 type of floor is highly 
significant, with a ‘natural’ floor being the least desirable type.  We would hypothesize lower 
mortality for households with electricity, radio, television, or a refrigerator, but only the last of 
these four achieves significance with a one-tailed 0.05 test.  Finally, maternal education has a 
monotonic protective effect.  Children whose mother had at least some secondary schooling 
have nearly a 30% advantage. 
 

                                                 
4 Since children in this age group do not themselves use toilets, we interpret this variable as a proxy of the general 
hygiene and sanitation infrastructure of the household. 
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We can summarize the potential protective effect of the household-level variables by 
multiplying together the eight ‘lowest’ values of these eight variables.  For a child in the optimal 
category of every variable, the relative risk (compared to a child in the reference category of 
every variable) would be 0.9309 x 1 x 0.7498 x 0.9744 x 0.9916 x 0.9520 x 0.8492 x 0.7364 = 0.4014.   
In contrast, a hypothetical child in the worst category of every variable would have a relative 
risk of 1.0418 x 1.3461 x 1 x 1 x 1 x 1 x 1 x 1 = 1.4024.  Thus, a convenient measure of the 
combined effect of these eight variables—irrespective of the choice of reference categories—is 
1.4024 / 0.4014 = 3.4938.  That is, a hypothetical child in the worst category of all eight 
household-level variables would have a fitted value of 1q0 that is 3.49 times greater than for a 
hypothetical child in the optimal category of the eight variables, holding everything else constant. 
 
The five spatial variables appear in models 4 and 5.  Their coefficients are similar in those two 
models but are closer to unity in model 5 than in model 4 because of the association with 
household-level variables.  Rainfall is weakly significant for age 0 in the absence of household-
level variables; urban residence is highly beneficial, as is higher density; infant mortality tends 
to increase with distance from the coast of Africa; and tree crops are the most advantageous 
type of farming system. 
 
Density and distance to the coast are all interval-level variables.  In order to give a better sense 
of their importance, we can calculate their effects on infant mortality at specific values.  For 
example, the 10th percentile of the density measure is 16.7496 and the 90th percentile is 374.9888.  
When converted to (natural) logarithms, giving a much better fit, the 10th and 90th percentiles 
are 2.8184 and 5.9269, respectively.  In model 5, the exponentiated coefficient for the log of 
density is 0.9716.  Therefore the relative risk for density is 0.97162.8284 = 0.9220 at the 10th 
percentile and 0.97165.9269 = 0.8430 at the 90th percentile.  Both of these are the risk relative to 
ln(distance)=0, i.e. distance=1.  As in the above scenario comparing the best and worst scenarios 
of household-level factors, it may be more useful to compare the two ends of the density 
distribution.  Thus, 0.8430/0.9220 = 0.9143 is the risk of an infant death at the 90th percentile of 
the density distribution, relative to the risk at the 10th percentile.  This is about a 9% reduction in 
the risk of an infant death. Given that these effects are over and above those of urban residence, 
which itself lowers the risk of death by 13%, we consider this effect to be substantial.  
 
The 10th and 90th percentiles of distance to the coast are 12.52742 and 892.0779, respectively.  
Going through the same steps as above, the risk of an infant death is about 30% greater at the 
90th percentile of the distance distribution than at the 10th percentile.   
 
Now consider child mortality, during ages 1-4, as described in Table F.  There are many 
similarities to the results for age 0, but some differences as well. Most of the country effects 
become insignificant by model 5, with the notable exceptions of Côte d’Ivoire and Niger, two of 
the three countries that were significantly higher than Ghana in terms of infant deaths.  The 
covariates introduced in models 2–5 have virtually no effect for Côte d’Ivoire; indeed, there is 
even a slight increase in its coefficient as other variables are added.  The third time period 
appears to have significantly higher mortality, but we must interpret this coefficient with care.  
The coefficient is affected by the timing of the specific surveys and the increased censoring of 
the most recent time period, as well as by possibly genuine trends in mortality, perhaps due to 
HIV infection. 
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The multiple birth and birth order effects are smaller for ages 1-4 than for age 0, although the 
birth order effect remains substantial and highly significant.  Multiple births have a relative risk 
about 60% to 65% higher than singletons, even after the effects of low birth weight and 
competition for the mother’s milk are largely past.  Higher age of mother (at time of birth) 
continues to have a beneficial effect, reducing the risk by 20% to 25%. The child’s gender has no 
effect on survival beyond infancy. 
 
Source of water becomes more important as the child is weaned.  Surface water is clearly 
inferior to piped water.  The class of ‘other water’, however, is optimal, lowering the risk of 
mortality by 13%. Unfortunately, this classification (1.5% of the sample) was used primarily in 
the Benin and Niger surveys and no additional information was provided to aid interpretation 
(or to allow us to group these cases with other known water types). Anything other than a flush 
toilet increases the risk of death by about 32% to 45% (Model 3).  A finished floor is optimal and 
‘other floor’ (again, no interpretation or additional aggregation, possible) is worst.  Electricity is 
highly protective for ages 1-4, even though it was not for age 0; households with electricity have 
child mortality probabilities about 23% below households without it.  Radio and refrigerator 
also have a protective effect. 5   Mother’s education is even more beneficial monotonic effect for 
ages 1–4 than for age 0.  The fitted probability of dying is about 36% to 42% less for women with 
some secondary education.   
 
In the final model, a hypothetical child in the optimal combination of the eight household 
predictors would have a risk of 0.7708 x 1 x 0.9308 x 0.7738 x 0.9233 x 0.8985 x 0.7882 x 0.6446 = 
0.2340, relative to a child in the reference combination.  Another hypothetical child, in the worst 
combination, would have a risk of 1.0614 x 1.3721 x 1.6629 x 1 x 1 x 1 x 1 x 1 = 2.4218.  The ratio 
of the highest risk combination to the lowest risk combination is   2.4218 / 0.2340 = 10.3494.  
That is, the fitted risk is more than ten times as great in the worst combination, compared to the 
best one.  This is a much greater degree of variation than was found for age 0. 
 
Of course, the household variables are to a large degree proxies for a whole package of 
characteristics representing standard of living, hygienic practices, and so on.  Individual effects 
should not be taken completely at face value.  For example, separate tabulations show that more 
education and having a refrigerator are highly correlated, and the parents in households with 
refrigerators tend to have even more than ‘some secondary’ education. Being able to preserve 
food safely is undoubtedly important for child survival, but households with refrigerators 
usually have many additional advantages. 
 
The spatial effects for mortality during ages 1–4 are somewhat different than for age 0.  Urban 
residence is still protective, but higher density is not.  Distance from the coast is highly 
significant. The effects of climate, and related agricultural production, are more important 
determinants of the mortality 1–4 year olds than infants: Tree crops are the optimal farming 
system, with about 30% lower risk of death than the ‘other’ category.  There is a significant but 
nonlinear effect for rainfall.  The coefficient for the quadratic term for rainfall is greater than one, 
which means effect of rainfall is curvilinear (concave).6   
                                                 
5 The correlation between ownership of a television and electricity is 0.627—the highest of pairwise correlation 
among these four variables—suggests that it may be overspecified to include both in the model. 
6 The survival analysis revealed significant differentials by the malaria transmission index, which ranges from 0 to 38 
in the study region.  As noted above, the index is primarily a national level composite (Kiszewski et al., forthcoming), 
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Recall that because rainfall and growing season were so highly collinear, we could not include 
both terms in the model. Instead, we ran the models replacing rainfall with growing season—a 
variable that might not pick up the effect of disease vectors, for example. The results (not shown 
in the tables) suggest that growing seasons under 120 days have significant negative effects on 
child but not infant mortality. Children in the two shortest-season areas, that is, in the arid and 
semi-arid range, had 15% and 12% higher risks of death than children in the optimal range.7 The 
risk of mortality was not higher for children in the wettest range (of more than 10 growing 
months) although agricultural research indicates that growing seasons of this length are not 
optimal (FAO 1978).  When this variable is introduced in model 5, it also reduces the impact of 
the distance to the coast. While still weakly significant, coastal zones in this region are wetter 
than interior areas, and this is accounted for more directly with the growing season data. 
Nevertheless, residual effects associated with coastal proximity remain. 
 
Overall effects and interpretations 
The Pseudo R2 in our tables is calculated in the standard way as R2 = 1 - (LLm / LL0), where 
LLm is the log of the likelihood function for the specific model, and LL0 is the log of the 
likelihood function for the null model, which has no covariates and is restricted to exactly the 
same cases that appear in the specific model.  It can be interpreted as the proportion of the total 
deviance that is ‘explained’ by the covariates in the model.  
 
The overall effect of the household-level variables can be measured by the increase in Pseudo R2 
when model 3 is compared with model 2, or model 5 is compared with model 4.  Similarly, the 
overall effect of the spatial variables is shown by the increase when model 4 is compared with 
model 2, or model 5 is compared with model 3.  We will not list these differences numerically, 
but it can easily be seen that the overall effect of both sets of variables is generally small, for 
both age 0 and ages 1-4.  As a set, the spatial variables appear most important when they are 
added to model 2 for ages 1-4; the Pseudo R2 for model 4 is increased by 0.04055 - 0.02972 = 
0.0108, about 1% of the total deviance.  The overall effect of the household variables is greater in 
every such comparison, which is consistent with the discussion of the levels and significance of 
coefficients. 
 
The urban-rural distinction, as noted before, has been included as a spatial characteristic for 
conceptual reasons, but it is actually available in the DHS surveys and would often be grouped 
with what we have called the household characteristics.  Much of the importance of the spatial 
variables can be attributed to this inclusion.  Further, Model 5 does not account for distance to 
nearest populated settlement or interaction terms between urban residence and density; for 
example, to consider the possibility that urban proximity is not a uniform effect (e.g., interurban 
high-density residence may increase the risk of mortality). Some of these possibilities were 
entertained separately, and are shown in Table I.  When the interaction of density and urban 

                                                                                                                                                             
thus it was removed from multivariate model. Nevertheless, had it been included in model 1 (not shown), mortality 
would be shown to raise the risk of an infant death (1.005) and child death (1.007), respectively. These effects were 
not sustained, as additional variables are entered, and produced some confounding effects at the country level, 
indicating that more evaluation of the variable or its specification is needed and that the coefficients should be 
interpreted with caution. 
7 The optimal cut-off of 70 days for arid was not possible given the original classification of the data, so the data were 
classified as 0-90 for arid and 91-120 for semi-arid. The reference category was a growing season of 120-240 days.  

DRAFT ** Not for circulation or citation ** DRAFT 



Spatial Analysis of West African Child Mortality  9/24/2003, p. 23 

residence is considered, urban residence loses its significance, and urban density lowers infant 
mortality (but not child mortality). The further an infant lives from a moderately sized city the 
greater the risk of death, as well, but this effect was not observed on child deaths. Yet, this effect 
is eliminated if it is entered along with the dichotomous urban-rural variable and population 
density.  This approach is far from satisfying in terms of explaining the continuum of urban-
rural phenomenon, yet alternatives were also not intuitive. Not shown is the substitution of the 
urban-rural and density variables in model 5 with a series of rank-order variables of urban-
density and rural-density classes. The risk of infant death was greatest in the sparsest and most 
dense rural areas, and higher in all rural areas than urban ones. In urban areas, the risk of infant 
death was the lowest in the most dense areas. The effects on children were not noteworthy. 
While this part of Africa is not known for urban areas of very high density, it is somewhat 
surprising to find no indication of density differences on children’s mortality within urban and 
rural areas. 
 
A coastal effect is another one of the robust spatial variables predicting infant and child deaths. 
The effect was also found to be important in economic development (Sachs et al, 2001) because, 
it is argued, coastal zones tend to be advantaged in their ability to transport goods, services, and 
ideas. The coastal countries in this study tend have higher Gross Domestic Product (GDP per 
capita, regardless of whether it is measured by Purchasing Power Parity or otherwise) than the 
landlocked countries, Burkina Faso, Mali and Niger (see Appendix Table H). Because country is 
also controlled for here8 and because the distance to coast measure is continuous, the impact of 
coastal proximity here may be interpreted as an inter- and intra-national access measure, above 
and beyond country-level economic development.  That is to say, interior dwellers in coastal 
countries are at greater risk of mortality than their coastal counterparts.  No subnational level 
income or GDP measure are available but it may be that within coastal countries, the coastal 
zone is disproportionately well off.  
 
Lessons from the extreme cases 
As a way of highlighting the extremes in the probabilistic distribution of death, we identified 
from Model 5 above the 1000 cases with the highest and lowest probability of death, for infants 
and children. Table J shows percentage of cases by selected variables. We found extremely high 
Pearson’s Chi-Squared values for each of these cross-tabulations (all with Pr<0.000) indicating 
that these extreme cases differ significantly from each other and from the remaining cases in the 
dataset.  
 
Infants with a high predicted probability of dying were disproportionately located in Mali and 
Niger (77% of high-risk cases, compared with 33.7% of the full sample). All were multiple births, 
nearly 80% were third or higher birth order, and 70% were males. Almost all (93.8%) were born 
to mothers with no education. Few infants (under three percent) were born into households 
with amenities such as electricity or a television.  Factors related to differences in environment 
and proximity to urban or coastal areas are prominently different in infants with a high 
probability of dying. In particular, these infants tend to live in dry zones far from both coastal 
and urban areas. Nearly half were born into areas with low annual rainfall, virtually all were 
born into areas over 200 km from a coastline (99.4%), and two-thirds were born over 50 km from 

                                                 
8 When country is omitted from Model 5—not shown—the effects of coastal proximity are raised to risk ratios of 
1.0004 and 1.0006, on infant and children, respectively. 
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a populated place. Moreover, nearly 80 percent of these infants live in sparsely populated areas 
(fewer than 50 persons per km2). Of all infants with a high predicted probability of death, 44.8% 
in fact died.  
 
Infants with high probability of survival, conversely, were not as geographically concentrated, 
with no country having a disproportionate number of these cases. Moreover, these cases are 
more dispersed among clusters; whereas five clusters in Mali and two clusters in Niger had 
eight or more infants with high probability of dying, no cluster had more than five infants with 
high probability of survival. Very few cases with high probability of survival were multiple 
births, and only 41.1 percent were male. Infants with a higher probability of survival tend to be 
more coastal and more urban than the full sample; however, these differences are not as marked. 
Frequencies of cases with household amenities are also slightly higher than the full sample. 
None of these 1000 cases died. 
 
Like infants, children at high risk of death are geographically concentrated, with 78.1% of all 
these cases found in Niger, and none found in Benin, Ghana, Senegal, and Togo. Moreover, 
these cases are concentrated within clusters, with 10% of all these cases found in seven clusters 
in Niger. Environmental and spatial factors also appear to affect infants and children in the 
same way. Nearly all live more than 200 km from a coast, and virtually none (0.2%) live in areas 
of moderate or higher population densities (150 or more persons per km2). Low maternal 
education is also prominent among children with high predicted probability of death, with 
nearly all (97%) of these children being born to mothers with no education and none being born 
to mothers with secondary or higher education. Differences in household amenities are 
especially pronounced, with virtually none of these children living in households with 
television, a refrigerator, or electricity. Of these 1000 children, 39.1% died. 
 
An examination of these “extreme cases” serves primarily to confirm the findings of the more 
thorough analysis above. Proximate determinants, such as infant sex and birth order, are more 
prominently different in the infant analysis, while differences in household characteristics are 
more pronounced in the child analysis, and differences in maternal education are prominent 
throughout.  Spatial characteristics of these extreme cases, however, provide some unique 
insight into the role of spatial factors in infant and child mortality. While cases with extremely 
high probability of dying are contained in a relatively compact area of southern Niger and Mali, 
clusters with low probability are less concentrated, and more coastal.  Cases (of both infants and 
children) with particularly high probabilities of death are strikingly not urban.  
 
5. CONCLUSIONS  
In conclusion, spatial variables appear to have an overall modest effect on both infant and child 
mortality, especially when the usual demographic and household characteristics are included.  
However, they do explain away a good deal of the country-specific variation in mortality, and 
may alert policy makers to address geographic parameters (like providing services to interior 
areas further from the coast). Further, they are associated with the household characteristics, 
and may well have an indirect effect mediated through these characteristics.  A meaningful 
future analysis would be to explore the degree to which the household characteristics are 
themselves determined by the physical environment. In the meantime, results from the present 
analysis suggest that policy efforts to reduce infant and child mortality should incorporate 
programs to increase mothers’ education and improve household sanitation.  
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Suggestions for Further Research 
Apart from estimating the effects of spatial variables mediated through the household, future 
studies should strive to optimize spatial information.  For example, urban and climate variables 
can be classified into subcomponents that provide more insight: a dichotomous urban-rural 
variable is complemented by specific information on population density and distance to urban 
center; climate variables reflecting rainfall, growing seasons, and farming systems are important 
in the assessment of the effects of disease transmission and food production on mortality.  But, 
how these variables should be optimized—that is, combined, interacted, and transformed—
depends on theoretical and statistical concerns beyond those which were considered here.  
 
There are several reasons to both widen and narrow the geographic scope of this study. 9 
Including countries with a wider range of physiographic features would facilitate comparisons 
that we could not undertake here. For example, elevation is thought to be an important 
component of malaria transmission in Africa, although in this study region there would have 
been little variability to evaluate.  Including one additional country, Nigeria, would also 
provide a more complete regional picture.  With more than 100 million inhabitants, Nigeria’s 
population is comparable in size to that of the entire region studied, and it is nearly surrounded 
by these countries. Results for the 2003 Nigeria DHS survey were unavailable at the time of this 
study, but any future studies should include it.  
 
The geographical scope may be narrowed to more precisely detect variations within a country.  
Because there are large differences (e.g., in population density or rainfall) over a large area, 
some of the effects within a country may be overpowered by the inter-country emphasis here.  
Comparative country-level studies would facilitate a more systematic assessment of 
hypothesized interactions between spatial and household characteristics, as well as among 
spatial characteristics.  Furthermore, questionnaire design for a single country may include 
country-specific covariates that are not necessarily comparable across multiple countries.  
Therefore, important covariates such as partner’s occupation that could not be used in the 
present study could be included in single country studies. 
 
Future survey implementation may also benefit by incorporating additional geographic 
concerns in the sampling frame.  Currently, surveys are representative within political regions, 
but not other geographic regions.10 To the extent that particular geographic parameters are 
believed to be important, oversampling in some places, such as hyper-arid zones, could be a 
valuable undertaking. At the least, future studies incorporating distinct geographic zones 
should take care to ensure that the sample sizes in the various classes of those zones are 
sufficient to generate robust results.   
 
Future work should attempt a more systematic examination of the spatial patterns of mortality 
and its determinants. This analysis has confirmed spatial and non-spatial risk factors, but it 
came short of examining cluster-level or fine-scale spatial patterns. This was not attempted in 
                                                 
9 It is important to recognize and attempt to reconcile differences in variable coding so as to lose as few covariates as 
possible. While in-country survey implementation teams may have an interest in making their surveys as country-
specific as possible, it may be possible post-hoc to determine complementarities across surveys for the purpose of 
relative ranking (e.g., best to worst condition).   
10 Some older DHS surveys, including Burundi 1987 and Côte d’Ivoire 1994, used environmental units of analysis. 
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the current analysis because of concerns over using the cluster as a unit of analysis. Additional 
statistical work and consideration of sampling issues would clarify the feasibility of this 
approach. Spatial statistical programs are becoming increasingly sophisticated, perhaps 
accelerating this line of inquiry. 
 
Another matter of spatial concern is access to resources. In order to assess a country’s quality 
and coverage of health care services, DHS has begun collecting data, including the geographic 
location, on health facilities in Service Provision Assessments surveys (SPA).  The SPA includes 
a nationally representative sample of health facilities, including national- and provincial-level 
hospitals, health centers, and dispensaries managed by the government or by NGOs operating 
under agreement with the government.  (Although the samples have until now excluded 
privately run pharmacies and clinics, it has been proposed to include them in future SPAs.)  
Information is collected from service providers and clients at these facilities concerning facility 
infrastructure, specific child health, family planning and maternal health services, and services 
for sexually transmitted diseases and HIV/AIDS.  This is a potentially rich source of national 
health care provision data that could be linked to household survey data where both types of 
data are georeferenced. In some countries, health facilities data may be available from other 
sources. Senegal, for example, through its AMDD (Averted Maternal Deaths and Disability) 
Program (Moreira et al. , n.d.) collects spatial information on all hospitals (government and 
private) and their service provision levels. Using such data in connection with the DHS might 
be a valuable exercise.11  
  
Similarly, other physical datasets may be of interest for future work in addition to some of those 
mentioned above (e.g., land use or land cover).  The Total Ozone Mapping Spectrometer (TOMS) 
aerosol index, which measures dust, could provide other correlates of mortality, especially in 
the arid regions where dust is especially problematic. Model data sets for some disease vectors 
other than malaria may also be considered.  
 
Finally, the geographic variables in this study were static, relating to one time period, while the 
surveys themselves were carried out over a five-year period and provide data about births from 
a fifteen-year period (1987-2001).  Data such as rainfall and NDVI is reported on a monthly basis, 
so that a location- and period-specific average rainfall could be calculated for each child in the 
survey.  Or, more modestly, country-specific rainfall datasets could be calculated averaging 
over the ten-year period previous to each survey.  Other data, such as population density, could 
be projected backwards in time to account for national decadal growth rates of 25-40% in the 
region in the 1990s to generate a more accurate estimate of population density at time of survey. 
Using time-varying data would require slightly different multivariate models than the ones 
pursued here, but it is a direction worth pursuing.  
 
 

                                                 
11 In connection with use of health service data, it would be informative to know more about the nutritional status 
and health care usage on children who died; because this would require lengthening an already long survey and may 
be determined too difficulty to obtain quality data, a pilot implementation would be best before determining the net 
value of the added data acquisition. 
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Infant 
mortality (1q0) 

Childhood 
mortality (4q1) Births

Female 
Sample Clusters

Pop '95 
(UN, '000)

Country

Most 
recent 
survey

Prior 
survey

Most 
recent 
survey

Prior 
survey

Most recent 
survey

Most recent 
survey

Most 
recent 
survey

Most 
recent 
survey

Most 
recent 
survey

Most 
recent 
survey

Prior 
survey

Benin 89.1 93.9 77.8 80 94.8 75 10,395 6,219 247 2001 1996 5,336
Burkina Faso 105.3 93.7 127.1 103.1 108.6 129.5 11,734 6,445 210 1998-99 1992-93 10,415
Cameroon 77 64.3 79.9 65.2 79.8 72.3 7,859 5,501 203 1998 1991 13,182
Cote d'Ivoire 112.2 88.5 77.2 66.9 111.5 70.7 3,884 3,040 140 1998-99 1994 13,528
Ghana 56.7 66.4 53.9 56.8 61.2 52.4 6,555 4,843 400 1998 1993 17,649
Guinea 98 87.5 106.6 99 12,011 6,753 293 1999 7,153
Mali 113.4 122.5 130.5 131.2 126.2 128.3 25,984 12,817 403 2001 1995-96 9,944
Niger 123.1 123.1 171.8 222.6 135.8 193 15,333 7,577 268 1998 1992 9,150
Senegal 67.7 68.2 76.5 68.2 69.4 75.2 14,569 8,593 320 1997 1992-93 8,330
Togo 79.7 77.3 72.3 83.8 80.3 69 14,065 8,569 288 1998 1988 4,060

Source: DHS Statcompiler, United Nations

Table A. Basic data on survey countries

5-year period before survey 10-year period before survey

Year
Infant 

mortality (1q0) 
Childhood 

mortality (4q1) 



Variable Benin
Burkina 

Faso
Came-
roon

Cote 
d'Ivoire Ghana Guinea Mali Niger

Sene-
gal Togo All type

Control variables
Birth cohort

Born 1987-1991 1.9 27.9 34.4 26.5 28.9 20.7 6.1 33.7 47.0 36.5 26.5 %
Born 1992-1996 48.9 51.2 51.9 50.8 49.7 53.6 50.7 51.0 50.7 49.9 50.9 %
Born 1997-2001 49.2 20.8 13.7 22.8 21.4 25.7 43.2 15.4 2.3 13.6 22.6 %

Proximate determinants
Multiple birth 5.8 2.9 3.8 3.2 4.0 3.8 3.5 3.4 2.8 4.9 3.6 %
Male 50.4 50.9 49.5 50.0 50.6 51.4 50.9 50.9 50.8 50.3 50.5 %
Mother's age

Mother <20 at birth 15.5 16.5 22.1 21.1 14.1 20.1 20.0 21.3 15.2 12.9 18.5 %
Mother 20-34 at birth 71.0 67.6 66.0 66.4 69.8 67.2 65.2 66.1 68.6 71.7 67.5 %
Mother >34 at birth 13.5 15.9 11.9 12.5 16.1 12.7 14.8 12.6 16.2 15.5 14.0 %

Birth order
First born 20.2 17.6 21.1 22.8 22.9 18.1 16.7 16.3 17.7 19.0 19.6 %
Second born 17.3 15.7 17.2 17.3 19.4 17.0 15.3 14.0 15.9 17.7 16.7 %
Third+ born 62.5 66.7 61.7 59.9 57.8 64.9 67.9 69.7 66.4 63.3 63.7 %

Socioeconomic factors
Drinking water

Piped water 37.4 8.5 31.3 46.7 30.9 17.8 26.7 16.0 44.1 30.1 28.6 %
Well water 43.2 86.2 31.4 45.3 36.2 47.0 68.3 75.7 52.8 40.2 53.4 %
Surface water 13.8 4.7 36.3 8.0 31.8 34.6 4.9 2.6 2.0 28.5 16.4 %
Other water 5.6 0.6 1.0 0.0 1.1 0.5 0.1 5.6 1.1 1.2 1.5 %

Toilet facility
Flush toilet 1.1 0.3 4.6 8.3 4.2 1.7 4.9 0.9 6.9 0.0 3.7 %
Pit latrine 23.7 18.2 84.3 51.2 68.8 60.9 73.1 16.9 59.0 27.8 50.7 %
Basic pit 74.5 81.4 11.0 40.4 26.9 37.4 22.0 82.1 33.8 70.0 45.4 %
Other toilet 0.7 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.3 2.2 0.2 %

Floor
Natural floor 45.5 76.4 60.1 25.7 18.7 58.6 83.1 86.5 43.1 30.8 53.1 %
Rudimentary floor 0.5 0.0 0.2 0.4 0.1 1.3 0.0 0.0 0.0 0.2 0.2 %
Finished floor 53.9 23.3 39.7 73.9 81.3 40.0 16.8 13.1 56.7 68.7 46.5 %
Other floor 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.4 0.2 0.3 0.1 %

Assets

Table B. Descriptive statistics of key co-variates, by country



Electricity 15.5 3.8 36.4 45.2 32.0 13.7 9.6 5.8 28.0 10.9 22.2 %
Radio 76.8 61.9 55.6 66.5 48.7 58.2 73.9 37.4 70.3 54.5 59.3 %
Television 13.4 4.5 18.2 28.8 17.0 8.9 15.5 4.7 21.3 11.6 15.0 %
Refrigerator 3.9 1.8 9.6 14.0 10.9 6.2 4.6 2.2 10.8 3.2 7.3 %

Mother's education
No education 75.4 92.3 37.7 66.7 40.3 87.0 85.5 89.3 78.1 62.6 69.7 %
Inc. primary education 16.6 3.6 24.6 13.1 16.9 5.7 9.0 3.7 7.5 27.3 12.3 %
Complete primary educ. 1.3 2.2 14.4 12.8 3.6 1.6 1.7 4.4 8.0 2.0 6.1 %
Inc. sec. educ. or higher 6.6 2.0 23.3 7.3 39.2 5.8 3.8 2.6 6.4 8.1 12.0 %

Spatial variables
Urban 30.5 9.9 27.2 31.9 25.2 24.9 22.2 16.2 33.5 23.5 23.5 %
Density within 30 km 262.9 72.8 105.4 343.1 301.4 91.3 56.3 59.8 947.6 196.0 225.4 mean
Distance to coast, km 190.2 758.6 417.0 196.7 169.6 203.2 792.3 877.2 76.6 199.0 417.1 mean
Dist. to place of 50k pop., km 37.5 73.9 34.5 40.7 28.8 44.5 76.4 63.2 29.9 29.5 47.3 mean
Arid zone

Non-arid 24.9 0.0 71.2 68.7 59.8 93.4 0.9 0.0 30.0 75.0 41.7 %
Dry subhumid 71.0 12.6 6.6 31.3 23.0 6.6 25.6 0.0 7.7 13.2 18.9 %
Semiarid 4.1 87.4 21.2 0.0 17.2 0.0 64.8 92.9 50.8 11.9 36.8 %
Arid/hyperarid 0.0 0.0 1.0 0.0 0.0 0.0 8.7 7.1 11.4 0.0 2.6 %

Farming System
Tree crop 0.0 0.0 32.4 57.5 58.6 1.6 0.0 0.0 0.0 18.8 22.0 %
Coastal artisanal fishing 36.6 0.0 3.2 21.3 26.0 18.8 0.0 0.0 0.5 20.1 11.9 %
All others 63.5 100.0 64.4 21.1 15.4 79.7 100.0 100.0 99.5 61.1 66.1 %

Average daily rainfall (mm) 3.1 2.0 4.4 3.9 3.3 5.2 2.0 1.3 1.8 3.1 3.0 mean
Malaria Stability Index 17.8 32.4 14.3 23.2 25.6 20.6 29.4 24.1 18.7 24.2 23.5 mean
Growing season (months)

under 3 0.0 3.1 1.8 0.0 0.0 0.0 24.1 76.3 15.7 0.0 12.6 %
3 - 4 0.0 21.5 4.5 0.0 0.0 0.0 12.1 21.5 41.5 0.0 9.6 %
6 - 8 74.0 75.4 26.9 6.6 20.8 72.3 63.8 2.2 42.8 45.7 38.0 %
8 - 10 26.1 0.0 30.1 29.5 46.6 18.3 0.0 0.0 0.0 54.4 20.0 %
over 10 0.0 0.0 36.8 63.9 32.7 9.4 0.0 0.0 0.0 0.0 19.8 %



Variable Source data Source Description variants Resolution

Population Density
Gridded Population of the 
World (GPW) v. 3 CIESIN

A1) at cluster, A2) within 10 km, and 
A3) within 30 km, B1) unconstrained 
and B2) constrained by national 
borders 2.5 minute

Urban proximity Urban-Rural CIESIN
Distance (euclidean) to nearest 
urban area

urban areas > A1) 20,000 and A2) 
50,000 people, coded as B1) points 
(presumed centroids) and B2) 
polygons, C1) unconstrained and C2) 
constrained by national borders 1 minute

Coastal proximity

Digital Chart of the World 
(DCW)-derived continent 
boundary

National Imagery and Mapping 
Agency (NIMA)

Distance (euclidean) to nearest 
point on the coastline 1:1,000,000

Distance to roads VMAP roads data
National Imagery and Mapping 
Agency (NIMA)

Distance (euclidean) to nearest 
point on a road 1:1,000,000

Farming System Farming Systems FAO

Farming system based on the 
classification system by Dixon 
et al. (2001) unspecified

Arid zone Arid zones
Millennium Ecosystem 
Assessment

Type of arid zone (non-arid 
zones are undifferentitated) unspecified

Stability of malaria 
transmission index Kiszewski et al., 2003

Composite of environmental and 
epidemiological data 30 minute

Rainfall

CRU05 0.5 Degree 1961-
1990 Mean Monthly 
Climatology

Intergovernmental Panel on 
Climate Change/ International 
Research Institute for Climate 
Prediction (IPCC/IRI)

average monthly rainfall at 
cluster, in mm/day, 1961-1990

by month, yearly average, maximum 
month 30 minute

Growing Season
International Institute for Applied 
Systems Analysis (IIASA)

Length of growing season, in 
months 30 minute

Table C. Geographic variables

Demographic

Ecological



Country Coefficient
Robust Std. 

Error z
Exponentiated 
Coefficient

Burkina Faso 0.568964 0.072360 7.86 1.7664**

Benin 0.427995 0.072815 5.88 1.5342**

Côte d'Ivoire 0.600754 0.102399 5.87 1.8235**

Cameroon 0.262742 0.084478 3.11 1.3005**

Guinea 0.596614 0.071421 8.35 1.8160**

Mali 0.741359 0.067393 11.00 2.0988**

Niger 0.743393 0.070315 10.57 2.1031**

Senegal 0.152848 0.075390 2.03 1.1651*

Togo 0.263117 0.073111 3.60 1.3010**

_cons -2.805231 0.061622 -45.52 0.0605**

Table D.  Results of GLM model for infant mortality by country

NB: The estimates in Table D, as in all other tables in this report, are 
weighted (see note x for more detail on the weights), with robust 
estimates of the standard errors that take into account the cluster 
design of the data.  Clustering at the household level is not taken into 
account.



Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5

COUNTRY
Benin 1.5614** 1.4959** 1.2323** 1.3174** 1.1831* 1.3177** 1.2924** 1.0261 1.0739 0.9462
Burkina Faso 1.7896** 1.7972** 1.3070** 1.1922# 1.1168 2.4616** 2.4319** 1.6759** 1.2546* 1.2008#
Cameroon 1.3156** 1.2707** 1.1900* 1.0187 1.0085 1.5199** 1.4802** 1.4491** 1.0359 1.0711
Cote d Ivoire 1.8328** 1.7998** 1.6770** 1.7223** 1.6284** 1.4193* 1.3939* 1.3995* 1.3874** 1.4467**
(R)Ghana
Guinea 1.7887** 1.7391** 1.3924** 1.3771** 1.2067# 1.8177** 1.7725** 1.3410** 1.2846# 1.0544
Mali 2.1042** 2.0787** 1.6528** 1.3896** 1.3473** 2.2881** 2.2293** 1.7616** 1.1622 1.1923
Niger 2.1857** 2.1481** 1.5781** 1.4665** 1.3814** 3.5445** 3.4371** 2.3779** 1.6650** 1.6014**
Senegal 1.1434# 1.1667* 1.0112 1.1852 1.0477 1.4892** 1.4771** 1.2689** 1.3018# 1.1544
Togo 1.3159** 1.2947** 1.0796 1.1466# 1.0421 1.3124** 1.3014** 1.0322 1.0874 0.9566

TIME PERIOD
(R)1987-1991
1992-1996 0.9503 0.9489# 0.9369* 0.9502 0.9407* 1.0469 1.048 1.0341 1.0347 1.0331
1997-2001 0.9619 0.9547 0.9473 0.9535 0.9503 1.4311** 1.4368** 1.3815** 1.4140** 1.3811**

SEX OF CHILD
(R)Female
Male 1.1695** 1.1731** 1.1702** 1.1726** 0.9938 0.9958 0.995 0.9953

MULTIPLE BIRTH
(R)Single Birth
Mult. Birth 3.4267** 3.5405** 3.4353** 3.5254** 1.5850** 1.6567** 1.6097** 1.6493**

BIRTH ORDER
(R)1st Birth
2nd Birth 0.8458** 0.8055** 0.8262** 0.8048** 1.0998# 1.0449 1.0704 1.0469
3rd+ Birth 0.9036* 0.8041** 0.8507** 0.8016** 1.2035** 1.07 1.1295* 1.0742

AGE OF MOTHER
(R)Mother <20
Mother 20-34 0.6931** 0.7417** 0.7242** 0.7452** 0.7473** 0.7929** 0.7806** 0.7916**
Mother 35+ 0.7242** 0.7523** 0.7388** 0.7533** 0.7352** 0.7628** 0.7534** 0.7619**

SOURCE OF WATER

Table EF.  Log probability models for 1q0 and 4q1. 

1q0 4q1



Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5
1q0 4q1

(R)Piped water
Well water 1.0772# 1.0418 1.0742 1.0614
Surface water 1.081 1.0566 1.1258# 1.1516#
Other water 0.9431 0.9309 0.7866* 0.7708*

TYPE OF TOILET
(R)Flush
Pit toilet 1.3355** 1.3080** 1.3241# 1.3397*
No toilet 1.4462** 1.3461** 1.4539* 1.3721*
Other toilet 1.1869 1.197 1.322 1.4098

TYPE OF FLOOR
(R)Natural
Finished floor 0.8621** 0.9011** 0.8963* 0.9308
Other Floor 0.7555 0.7498 1.6601# 1.6629#

HOUSEHOLD
Has elect. 0.9289 0.9744 0.7536** 0.7738**
Has radio 0.9902 0.9916 0.9185* 0.9233*
Has television 0.9311 0.952 0.8943 0.8985
Has refrig. 0.8557# 0.8492# 0.8103 0.7882#

MOTHER S EDUC.
No education
Some primary 0.916 0.9469 0.8305* 0.8918
Comp. primary 0.7756* 0.8205* 0.7485** 0.8122*
Some sec. + 0.6940** 0.7364** 0.5803** 0.6446**

RAINFALL
Av. Daily Rain 1.1292# 1.0996 0.9478 0.9141
Rain squared 0.9887 0.9924 1.0111 1.0174*

TYPE OF PLACE
(R)Rural
Urban 0.7218** 0.8722** 0.6323** 0.8808*
Log density 0.9576** 0.9716# 0.9844 1.0105
Dist. to coast 1.0005** 1.0003* 1.0006** 1.0004*

FARMING SYSTEM
Treecrop 0.7835** 0.8127* 0.6810** 0.6976**



Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5
1q0 4q1

Fishing 0.976 0.9817 0.9234 0.9389
(R)Other

Constant 0.0643** 0.0803** 0.0792** 0.0867** 0.0777** 0.0530** 0.0588** 0.0647** 0.0835** 0.0732**

No. of cases 122389 122389 118701 122389 118701 98249 98249 95381 98249 95381
df 11 17 32 24 39 11 17 32 24 39
Log lik. -37485.04 -36551.4 -34776.94 -36286.14 -34722.08 -24513.11 -24443.8 -23332.5 -24170.9 -23272.65
Pseudo R2 0.01042 0.03507 0.04432 0.04207 0.04583 0.0269 0.02972 0.045 0.04055 0.04745
Key to symbols:
#: significant at one-tailed .05 level
*: significant at two-tailed .05 level
**: significant at two-tailed .01 level
(R): reference category



S(t ) at 12 months S(t ) at 59 months

<20 years 86.9 89.3
20-34 years 91 91.2
> 34 years 90.6 91.3

First birth 88.4 91.3
Second birth 91 91.2
Third or higher birth 90.5 90.7

1987-1991 90 90.3

1992-1996 90.1 91.1
1997-2001 91 92.1

None 88.9 89.2
Some primary 91.5 93.1
Finished primary 92.3 94.1

Secondary/higher 94.9 96.6

Single 90.9 91.2
Multiple 71 86.5

Female 90.9 90.9
Male 89.4 90.9

Rural 89.3 89.8
Urban 93 94.4
<25 per sq km 87.6 89.1
25-100 per sq km 89.4 89.3
100-500 per sq km 92.3 93.6
500-1000 per sq km 94.7 96
>1000 per sq km 93.9 96.5

In urban area 92.5 93.9
1-25 km 91.8 92.3
25-100 km 90 90.1
100-150 km 88.3 89.3
>150 km 87.6 87.6

<2 ml per day 88.6 86.5
2-4 ml per day 90.6 92.2
>4 ml per day 91.2 93.4

Tree crops 92.4 94.8
Root crops 87.9 90.9
Cereal/root crops 89.4 89.5
Agro-pastoral 89.3 87.7
Fishing 92.9 95.2

under 3 months 87 84.1
3-4 months 89.8 87.8
4-8 months 89.7 90.4
8-10 months 91.3 93.9
over 10 months 92.1 94.5

Low index 91.2 92.3
Medium index 90.2 91.4
High index 88.6 87.2

NB: The Chi-square for the log-rank statistics were strongly rejected at pr<.0001 for all  
variables except except Sex of children age 1-4 years (pr<.0537). 

Growing season

Malaria

Residence and Density

Birth cohort

Mother’s education

Multiple births

Sex

Distance to city of 50k

Rainfall

Farming

Table G. Summary table of S(t ) for selected covariates

Variables

Mother’s age at birth

Birth order



Pop (2)

Pop 
Growth 
Rate (4)

Life 
expectan

cy  (4)
Fertility 

(4)
GDP 

Growth (3) Poverty (4) Poverty (4)

HIV prev. 
adults 15-
49 yrs (1)

Malnutriti
on 

Coverage 
of care 

Use of 
health 

services

2003 est. 
(in 

millions) 2003 est. 2003 est. 2003 est. 2001 est.

2001 
est.expres

sed as 
PPP

Average 
Annual 
Growth 

1990-2000

% Pop below 
poverty line, 

2001 (4)

Gini index: 
Distribution of 
family income 

(year) end of 2001

Weight-
for-Height 
<3s.d. (4)

Vaccinati
on 

coverage 
(4)a

Assisted 
delivery 

(4)b
Year of 

DHS

Benin 7 2.95 51 6.3 368 980 4.7 37 3.6 1.7 59 72.9 2001
Burkina Faso 13.2 2.6 44.5 6.34 215 1,120 4.9 45 48.2 (1994) 6.5 4.3 29.3 31 1998/99
Cameroon 15.7 2.02 48 4.63 559 1,680 1.7 48 47.7 (1996) 11.8 0.8 29.4 58.3 1998
Cote d'Ivoire 17 2.15 42.7 5.51 634 1,490 3.5 37 (1995) 36.7 (1995) 9.7 1 50.7 47.1 1998/99
Ghana 20.5 1.45 56.5 3.32 269 2,250 4.3 31 (1994) 40.7 (1999) 3 1.7 62 44.3 1998
Guinea 9 2.37 49.5 5.9 394 1,960 4.3 40 (1994) 40.3 (1994) na 2.9 32.2 34.8 1999
Mali 11.6 2.82 45.4 6.66 239 810 3.8 64 50.5 (1994) 1.7 1.9 28.7 39 2001
Niger  11 2.71 42.2 6.91 175 890 2.4 63 (1993) 50.5 (1995) na 3.7 18.4 17.6 1998
Senegal 10.6 2.56 56.4 4.93 476 1,500 3.6 54 41.3 (1995) 0.5 46.6 1997
Togo 5.4 2.37 53.4 4.97 270 1,650 2.3 32 (1989) 6 2.1 30.8 50.5 1998

(1) UNAIDS/WHO
(2) IPC
(3) 2002 World Development Indicators http://www.worldbank.org/data/wdi2002/pdfs/table%204-1.pdf
(4) http://www.odci.gov/cia/publications/factbook/geos/bn.html
(5) ORC Macro, Measure DHS+ STAT Compiler
(6) UN Human Development Report Office, downloaded from http://www.undp.org/hdr2003/indicator/indic_111_1_1.html

(a)  All vaccinations include children who are fully vaccinated (i.e., those who have received BCG, measles, and three doses of DPT and polio (excluding polio 0))

Appendix, Table H. National level Indicators for the Study Region. 

Populaton indicators DHS Health indicators

(b) Doctor or trained midwife/health professional

Poverty indicators

GDP per capita (6)



A B C D E

Variable

urban 0.8568 ** - 0.8178 -  0.8749 **

density (ln) - 0.9641 * 0.9664 + -  0.9772
density (ln) * urban - - 1.0147 -  -

distance to pop. place - - - 1.0007 * 1.0003
density (ln) * distance - - - - -

- - - - -

urban 0.8859 ** - 1.0852 - 0.876 **

density (ln) - 1.0042  1.0273 - 1.001

density (ln) * urban - - 0.9531 -  -

distance to pop. place - - - 0.9997 1.000
density (ln) * distance - - - - -

NB: All other variables in Model 5 are controlled for here, but in none of these models is Model 5 exactly replicated.
 + p < 0.10

* p < 0.05

** p < 0.01

*** p < 0.001

Table I. The relative risk of dying at 1q0 and 4q1: Variations on urban-type variables in Model 5. 

1q0  

4q1 



Variable Most likely to 
survive

Most likely to 
die

Most likely to 
survive

Most likely to 
die

Total 
Percent

Died 0.0 44.8 0 39.1 8.4
Country

Burkina Faso 6.8 4.6 9.8 3.9 9.6
Benin 8.4 3.3 8.3 0.0 8.5
Cote d'Ivoire 2.4 3.0 4.1 0.3 3.2
Cameroon 8.4 0.5 7.0 0.6 6.4
Ghana 7.4 0.0 8.7 0.0 5.4
Guinea 10.0 10.0 10.0 1.3 9.8
Mali 17.6 47.5 20.8 15.8 21.2
Niger 8.9 29.5 2.8 78.1 12.5
Senegal 17.8 0.8 15.9 0.0 11.9
Togo 12.3 0.8 12.6 0.0 11.5

Year of Birth
1987-1991 0.0 25.5 0.0 14.5 24.9
1992-1996 2.7 49.4 16.2 18.1 50.8
1997-2001 97.3 25.1 83.8 67.4 24.3

Male child 41.1 70.8 48.5 48.3 50.6
Multiple birth 0.8 100.0 1.7 50.1 3.7
Birth order

First birth 13.7 9.3 19.5 20.3 18.5
Second birth 17.4 10.9 17.6 13.6 16.3
Third and subsequent 68.9 79.8 62.9 66.1 65.3

Mother's age
Younger than 20 10.0 22.2 13.3 36.3 17.9
20-24 69.9 58.3 70.4 53.4 67.9
35 and older 20.1 19.5 16.3 10.3 14.3

Household water source
piped 35.0 10.6 33.8 5.2 27.2
well 50.5 76.3 50.6 85.3 56.7
surface 12.0 12.2 13.8 9.1 14.2
other 2.5 0.9 1.8 0.4 1.9

Electricity in household 25.2 2.5 24.6 0.1 16.3
Radio in household 66.0 52.1 66.7 30.1 61.7
Television in household 20.0 2.8 21.6 0.2 13.2
Refrigerator in household 11.3 0.5 10.9 0.0 5.9
Mother's education

No education 66.1 93.8 66.3 97.0 76.5
Incomplete primary 12.3 5.6 13.7 2.4 11.3
Complete primary 5.5 0.4 5.1 0.6 4.2
Secondary and higher 16.1 0.2 14.9 0.0 8.0

Profiles of the extreme cases: 1000 cases with the lowest and highest predicted probability of dying

4q01q0
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