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Abstract

The aim of this study is to investigate the role of genetics and environment in the suscep-

tibility towards breast cancer. We adopt an interdisciplinary approach combining a bivariate

survival model including non observed heterogeneity - a correlated frailty model - with genetic

models. These ones enable to decompose the frailty variance into its genetic and environmental

components. The methodology is applied to breast cancer data from the Swedish Twin Reg-

istry, including information about all the female monozygotic and dizygotic twin pairs born in

Sweden between 1886 and 1967. The estimate of heritability in the propensity to develop a

breast cancer is obtained taking into account the possibility that a fraction of the population

is not susceptible to experience the event. The inferential problem is solved in a Bayesian

framework and the numerical work is carried out using MCMC methods. Possible extensions,

advantages and limitations of the proposed method are discussed.
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1. Introduction

This study is concerned with an attempt to investigate the role played by genetic and

environmental factors in determining the individual susceptibility towards breast cancer, and

to derive an estimate of heritability in the propensity to develop the disease. This kind of

questions have been addressed by di¤erent authors working in the …elds of medicine, genetics

and biostatistics, and answers have often arisen from interdisciplinary considerations (McGue et

al. 1993, Yashin and Iachine 1995, Do et al. 2000, Scurrah et al. 2000). In our research we try

to estimate heritability of breast cancer via application of a correlated frailty-mixture model to

a set of data concerning the onset of a breast cancer in a population of identical (monozygotic)

and fraternal (dizygotic) female twins. We furthermore use quantitative genetics techniques in

order to provide a genetic interpretation of our estimates.

Frailty-mixture models (Aalen 1988, Hougaard 1994, Longini 1996, Price and Manatunga

2001) are models of survival analysis in which, on the one hand, the possibility of an unsuscep-

tible fraction in the population is accounted for, and, on the other hand, susceptible individuals

are allowed to be heterogeneous in their risks to experience the event of interest.

The introduction of an unsusceptible fraction leads to consider the population under study

as a mixture of two populations: susceptibles and long-term survivors. The susceptibles will

eventually develop the disease before the end of the complete period at risk. The long-term

survivors (sometimes called ”cured”, ”immune”, ”stayers”) will survive until the end of the

complete period at risk without experiencing the event of interest. We do not adopt here the

’relative’ interpretation of long-term survivors as the set of individuals who have not experienced

the event after the end of the ’normal period of risk’ (Wang 1994). Even if the latter de…nition

has the advantage of allowing to identify an a priori set of long-term survivors, we believe in

the di¢culty to de…ne a ’normal period of risk’ in the case of the onset of a disease.

The individual heterogeneity among the fraction under risk is allowed by using frailty models

(frailty-mixture models) where the frailty distribution is a mixture of a discrete and a continuous

part. If p is the susceptible proportion of the population, the frailty distribution has point mass

at zero with probability (1 ¡ p) and is modeled via a continuous distribution with probability

p.

In our study we deal with bivariate (twin) data and, by consequence, we need to specify
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a dependence structure between the durations in each pair. We do this via application of a

correlated frailty-mixture model (Wienke et al. 2003). The typical assumption of the correlated

frailty model (Yashin et al. 1995) is that the frailties of the two twin partners are di¤erent but

eventually correlated, with a correlation coe¢cient to be estimated by the model. In a correlated

frailty-mixture model this parameter represents the correlation between cotwins’ frailties in the

subpopulation of susceptible individuals. We furthermore assume that the susceptible statuses

of the two individuals in a twin pair are independent of each other (Wienke et al. 2003).

The model described above is applied to combined data for monozygotic and dizygotic twins,

leading to a di¤erent estimate of the correlation coe¢cient for the two groups of twins. Monozy-

gotic twins share all the genetic endowment, while dizygotic twins, like all siblings, share in

average half of the genes. That is why a di¤erence in the estimated correlation between cotwins’

propensities to develop a breast cancer for the two groups can give important suggestions in

the attempt to estimate the role of genes in the susceptibility towards the disease. Following an

approach introduced by Yashin and Iachine (1995), we adopt here quantitative genetic equa-

tions (Falconer 1990) in order to obtain an estimate of heritability of breast cancer. We are

especially interested to see if such estimate is sensitive to the introduction of the unsusceptible

fraction into the model.

2. Statistical methods

2.1 Frailty models

Frailty models represent a particular area of survival analysis. This discipline typically stud-

ies the behavior of a random variable X, describing the time since the origin of an observation

period till the moment of occurring of an event of interest. The survival function is de…ned as

the probability of the event occurring after a certain time:

S (x) = Pr (X > x) . (1)

In the case of continuous time, another quantity is introduced, the so-called hazard function,

which is de…ned as the probability of the event occurring in the interval [x,x+¢x), given that
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it has not yet occurred before x, divided by the length of the interval, and for ¢x ! 0:

µ(x) = lim
¢x!0

P (x · X < x+ ¢xjX ¸ x)
¢x

(2)

The hazard function characterizes the risk changing over time, specifying the instantaneous

failure rate at time x, for an individual who is still at risk of experiencing the event at that

time.

Being H (x) the cumulative hazard function (H (x) =
R x
0 µ(t)dt), the following relations

hold:

S (x) = exp (H (x)) (3)

µ(x) =
f (x)
S (x)

(4)

where f (x) is the density function of the random variable X.

Frailty models are typically based on the so-called multiplicative assumption (Cox 1972), i.e.

the hazard function (2) is represented by the product of a baseline hazard (µ0(x)) and a frailty

term (Z), the latter describing the role played by unobserved risk factors on the individual risk

(Vaupel et al. 1979):

µ(x, Z) = Zµ0(x). (5)

In our study, we are dealing with multivariate frailty models, which were created with

the aim to assess for mutual dependence between the lifespans of related individuals. The

…rst approach developed in the literature, and still much employed, is based on the concept

of shared frailty (Clayton 1978, Oakes 1982, Hougaard 1984, Vaupel et al. 1992, Sahu et al.

1997). Groups of individuals (family, litter, clinic or recurrent events from the same individual)

share the same frailty and their durations are assumed to be conditionally independent, given

the frailty variable. In the case of pairs of individuals, and being (Xi1,Xi2) the vector of life

spans (duration times) for the two individuals from the pair i (i = 1, ..., n), the shared frailty

model is thus characterized by the two main assumptions:

(i) µ(xij , Zi) = Ziµ0(xij) i = 1, ...,n j = 1,2 (6)
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(ii) Xi1jZi ? Xi2jZi i = 1, ..., n (7)

where Zi represents the unobserved heterogeneity term, which is supposed to be ’shared’ by

the two individuals in the pair i.

Shared frailty models are useful when we want to explain correlations within groups, but

they have some limitations. First, they deal with a de…nition of frailty, which is not consistent

with the de…nition given in the univariate framework (Vaupel et al. 1979). In a shared frailty

model, the frailty term represents a part of individual frailty, only capturing the components

that are ’shared’ by all individuals within a cluster. Second, they force all unobserved risk

factors to be the same within a cluster, which is not always reasonable. For example, when

one deals with pairs of twins there is no reason to assume that both partners in a pair share

the same unobserved heterogeneity. Third, shared frailty will only induce positive association

within a group. However, in some situations it could be useful to allow also for a negative

correlation between lifespans within the groups (Xue and Ding 1999).

To overcome these limitations, a correlated frailty approach has been developed (Butler et

al. 1986, Lillard 1993, Yashin et al. 1995). The correlated frailty assumption is more ‡exible

than the shared frailty one in the sense that the model includes di¤erent - but correlated -

frailties for the two individuals in a pair. The correlation coe¢cient between the two frailties

is one of the parameters to be estimated by the model.

A correlated frailty model is thus characterized by:

(i) µ(xij , Zij) = Zijµ0(xij) i = 1, ..., n j = 1,2 (8)

(ii) Xi1jZi1, Zi2 ? Xi2jZi1,Zi2 i = 1, ..., n (9)

where now we have a speci…c frailty variable for each individual in the population.

The conditional likelihood of the model is given by:

L (xjz) =
nY

i=1
fXi1 ,Xi2jZi1,Zi2 (xi1, xi2jzi1, zi2) (10)

where x = (x1, ...,xn), xi = (xi1, xi2); Z = (Z1, ..., Zn), Zi = (Zi1,Zi2) and fXi1,Xi2 jZi1,Zi2
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represents the bivariate conditional density of the life spans for the pair i. The conditional

independence of the life spans given the frailties (9) allows to rewrite (10) as follows:

L (xjz) =
nY

i=1

2Y

j=1

fXijjZij (xij jzij) (11)

where now we deal with the univariate densities fXijjZij (j = 1, 2).

If some individuals in the population are censored, then their contribution to the likelihood

is only given by the survival function. By consequence, the conditional likelihood takes the

form:

L (x,δjz) =
nY

i=1

2Y

j=1

h
fXijjZij (xij jzij)

iδij
h
SXijjZij (xij jzij)

i1¡δij
, (12)

where δij is the censoring indicator for the j-th individual in the i-th pair, with δij = 1 if the

individual experiences the event before the end of the observation period, and δij = 0 otherwise.

Considering the relations (see equations (3) and (4)):

fXjZ (xjz) = µ (x, z)SXjZ (xjz) (13)

SXjZ (xjz) = exp (¡zH0 (x)) , (14)

where SX jZ is the conditional survival function given the frailty variable, and taking into account

the multiplicative assumption (8), the expression for the conditional likelihood becomes:

L (x, δjz) =
nY

i=1

2Y

j=1
[zijµ0 (xij) exp (¡zijH0 (xij))]δij [exp (¡zijH0 (xij))]1¡δij . (15)

To complete the model, it is necessary to make assumptions about the shape of the baseline

hazard µ0 (x) and the form of the bivariate distribution of the vector of frailties fZi1,Zi2.

Shared and correlated frailty models have been estimated both parametrically and semipara-

metrically. The most adopted parametrical hypothesis is a Gompertz baseline hazard (Vaupel

et al. 1992, Iachine et al. 1998, Wienke et al. 2001) but other shapes are also possible, for exam-

ple Weibull (Sahu et al. 1997, Do et al. 2000, Visscher et al. 2001) or (piecewise) exponential

(Xue and Ding 1999, Scurrah et al. 2000). Yashin and Iachine (1994) derived a semiparametric
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representation for the correlated gamma frailty model, which opened new opportunities for the

statistical analysis of bivariate data. This representation allows to estimate the model without

making assumptions about the shape of the baseline hazard. The semiparametric approach was

also adopted in a Bayesian framework to estimate di¤erent shared frailty models by Clayton

(1991) and Spiegelhalter et al. (1996), among others.

Every distribution of a positive random variable can be adopted to model frailty. The

gamma distribution has been widely applied in the literature (Clayton 1978, Vaupel et al.

1979, Oakes 1982, Yashin and Iachine 1994, Hougaard 2000, Wienke et al. 2001). The gamma

choice is convenient from a mathematical point of view, because of the simplicity of the Laplace

transform, which allows for the use of traditional maximum likelihood procedures in parameter

estimation. Another possibility is to assume that frailty is lognormal distributed (Korsgaard

et al. 1998, Spiegelhalter et al. 1996, Xue and Ding 1999, Ripatti and Palmgren 2000, Do et

al. 2000, Scurrah et al. 2000). The lognormal approach is much more ‡exible than the gamma

one in creating correlated but di¤erent frailties as required in the case of the correlated frailty

model. Unfortunately, with a lognormal assumption it is impossible to derive the marginal

likelihood function in an explicit form and parameter estimation has to be performed with the

help of more sophisticated estimation strategies, such as numerical methods of integration or

Bayesian MCMC methods.

2.2 Mixture and frailty-mixture models

Most approaches to the analysis of duration data implicitly assume that all individuals in

the study population will eventually experience the event if followed-up for a su¢ciently long

time. This means that all individuals are susceptible to the event. However, in many situations,

it is more reasonable to allow for the possibility that a fraction of the population will never

experience the event. These situations can arise when one is interested in the onset or in the

recurrence of a disease (Farewell et al. 1977, Langlands et al. 1979, Maller and Zhou 1995, Price

and Manatunga 2001, Wienke et al. 2003) or in the case of toxicological experiments (Farewell

1982, Kuk and Chen 1992). More in general, the existence of an unsusceptible fraction in the

study population should be taken into account in the case of the presence of a big number of

censored observations and when the empirical survival function seems to level o¤ far from the
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zero line. This can also happen for many socio-demographic phenomena like the contraceptive

use (Wang 1994, Wang and Murphy 1997) and the birth of a child (Yamaguchi and Ferguson

1995, Li and Choe 1997, McDonald and Rosina 2001).

Mixture models have been created in order to allow for the existence of an unsusceptible

fraction in the study population. The …rst formulation is due to Farewell (1977) who introduced

into the model a binary variable Yi taking value Yi = 1 if the i-th individual in the population

is susceptible to the event of interest and Yi = 0 otherwise. The probability pi = Pr(Yi = 1) is

assumed to be related to a set of individual characteristics Ci by means of a logistic relationship:

pi =
exp

¡
βTCi

¢

1 + exp
¡
βT Ci

¢, (16)

where β is a vector of coe¢cients. Conditionally on Yi = 1, an exponential model is de…ned on

the duration time Xi for the i-th individual:

S (xijYi = 1) = exp (¡λxi) . (17)

In this model the conditional hazard is constant and given by;

µ (xijYi = 1) = λ. (18)

Other shapes of the conditional hazard have been speci…ed later (Farewell 1982, Kuk and Chen

1992, Wienke et al. 2003) and the e¤ect on the time of failing of the individual caracteristics

Ci has been introduced, following the multiplicative assumption:

µ (xijYi = 1) = µ0 (xijYi = 1) exp
¡
γT Ci

¢
, (19)

where µ0 (xijYi = 1) is the baseline conditional hazard function, and γ are coe¢cients describing

the e¤ect of covariates on the risk of experiencing the event, for those individuals who are

susceptible. In the simple case of the exponential model, µ0 (xijYi = 1) = λ.

In order to give the likelihood function for a mixture model, let us start from the general

expression of the likelihood function in a survival model, with censored observations (see also
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equation (12)):

L (x,δ) =
nY

i=1
f (xi)δi S (xi)1¡δi . (20)

Indicating with f (xjY = 1) and f (xjY = 0) the density functions for the susceptible and the

unsusceptible fraction, the marginal density is the result of the following mixture:

f (x) = pf (xjY = 1) + (1 ¡ p)f (xjY = 0) . (21)

Equivalently, the marginal survival function is given by:

S (x) = pS (xjY = 1) + (1 ¡ p)S (xjY = 0) . (22)

Giving that the long-term survivors will never experience the event, their conditional density

function is equal to zero and their conditional survival function is equal to one. Thus equations

(21) and (22) can be simpli…ed as follows:

f (x) = pf (xjY = 1) (23)

S (x) = pS (xjY = 1) + (1 ¡ p) (24)

Substituting (23) and (24) in equation (20), and considering that:

f (xijYi = 1) = µ (xijYi = 1)S (xijYi = 1) ,

where S (xijYi = 1) = exp
£¡ Rxi

0 µ (tjYi = 1)dt
¤

and µ (tjYi = 1) is given by equation (19), we

obtain the following expression for the likelihood function:

L (x, δ) =
nY

i=1
[pif (xijYi = 1)]δi [(1 ¡ pi)+ piS (xijYi = 1)]1¡δi = (25)

=
nY

i=1

·
piµ0 (xijYi = 1) exp

¡
γT Ci

¢
exp

µ
¡ exp

¡
γT Ci

¢Z xi

0
µ0 (tjYi = 1)dt

¶ δ̧i

·
(1 ¡ pi) + pi exp

µ
¡exp

¡
γT Ci

¢Z xi

0
µ0 (tjYi = 1)dt

¶ 1̧¡δi

.
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In the above model the interest is not in estimating the size of the unsusceptible fraction but

in estimating the separate e¤ect of the covariates on the overal risk of experiencing the event

(the probability of being susceptible) and on the time of failing for the susceptible fraction of

the population (Farewell et al. 1977).

The unobserved heterogeneity has been introduced in traditional mixture models during

the last …fteen years, giving place to so-called frailty-mixture models. Only a portion of hetero-

geneity is explainable in terms of observed covariates; there remains a degree of heterogeneity

induced by unobserved risk factors. Failing to account for unobserved heterogeneity between

individuals may lead to distorted results. In a frailty-mixture model the frailty distribution is

a mixture of a discrete and a continuous part: the frailty distribution for the i-th individual in

the population has point mass at zero with probability (1 ¡ pi) and is a continuous distribution

with probability pi. For those individuals who are susceptible, frailty acts multiplicatively on

the baseline hazard, giving place to the following expression for the conditional hazard function

(see equation(19)):

µ (xijYi = 1, Zi) = Ziµ0 (xijYi = 1) exp
¡
γT Ci

¢
, (26)

where with Zi we indicate the unobserved heterogeneity term. The likelihood function, which

is now conditional to the frailty variables, takes the form:

L (x, δjz) =
nY

i=1

·
piziµ0 (xijYi = 1) exp

¡
γT Ci

¢
exp

µ
¡zi exp

¡
γT Ci

¢Z xi

0
µ0 (tjYi = 1)dt

¶¸δi

·
(1 ¡ pi) + pi exp

µ
¡zi exp

¡
γT Ci

¢Z xi

0
µ0 (tjYi = 1)dt

¶¸1¡δi

. (27)

All considerations made in the Section 2.1 about the shape of the baseline hazard and the

distribution of the frailty variable in a frailty model are still valid here.

Price and Mantunga (2001) gave a good introduction into this area and applied leukemia

remission data to di¤erent mixture, frailty and frailty-mixture models. They conclude that

frailty models are useful in modeling data with an unsusceptible fraction. McDonald and Rosina

(2001) propose a mixture model that combines a discrete-time survival model (with constant

baseline hazard) with a logistic regression model for the probability of never experiencing the

event of interest. They also introduce a non-observed heterogeneity term (frailty) in their
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discrete-time event-history model. Chatterjee and Shih (2001) give an extension in the bivariate

setting, estimating a shared frailty model with a cure fraction. Wienke et al. (2003) provide a

further generalization with a correlated gamma frailty model for those who are susceptible to

experience the event.

2.3 A lognormal correlated frailty-mixture model

As we have pointed out before, in our study we deal with bivariate (twin) data and, by

consequence, we need to specify a dependence structure between the durations in each pair.

We do this via application of a correlated frailty-mixture model. The typical assumptions of

the correlated frailty model (Yashin et al. 1995) is that the frailties of the two twin partners

are di¤erent but eventually correlated, and the durations of the two individuals in a pair are

conditionally independent given the frailty variables (see equations (8) and (9)). We furthermore

assume that the susceptible statuses of the two individuals in a twin pair are independent of each

other. Wienke et al. (2003) also considered a model relaxing the restriction of independence, but

they showed that the more complicated mixture model without the independence assumption

does not introduce a signi…cant improvement. Finally, being especially interested in estimating

the size of the unsusceptible fraction and the correlation between the frailty variables of twin

partners, we do not introduce covariate information into the model.

The likelihood function of the correlated frailty-mixture model can thus been seen as a

generalization of (15), taking into account the unsusceptible fraction, or an extension in the

bivariate setting of equation (27), which describes the likelihood in the case of an univariate

frailty-mixture model:

L (x,δjz) =
nY

i=1

2Y

j=1

·
pzijµ0 (xij jYij = 1) exp

µ
¡zij

Z xij

0
µ0 (tjYij = 1)dt

¶ δ̧ij

(28)

·
(1 ¡ p)+ p exp

µ
¡zij

Z xij

0
µ0 (tjYij = 1)dt

¶¸1¡δij

where now the probability of being susceptible p does not depend on individual caracteristics.

In our study we speci…ed a Gompertz conditional baseline hazard:

µ0 (xjYij = 1) = a exp (bx) , (29)
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and the vector of frailties is assumed to follow a bivariate log-normal distribution. This one

is adopted because of its large ‡exibility in multivariate modeling, especially when we are

interested in introducing a correlation between frailties, as in the case of the correlated frailty

model.

For identi…ability reasons, we have to make a restriction on the parameters of the frailty

distribution. Following the usual de…nition of frailty used in demography (Clayton 1978, Vaupel

et al. 1979), the expected value of frailty is here constrained to be equal to one (E (Zij) = 1, for

i = 1, ..., n and j = 1,2). In that way, one is assuming that the hazard function of a ’standard’

individual corresponds to the baseline hazard function, and any individual in the population

has the hazard rate multiplicatively distorted by his frailty value zij. This assumption di¤ers

from the one generally made in the context of correlated log-normal frailty models. Usually

in fact the restriction is on the logarithm of the frailty variable, whose mean is assumed to be

equal to zero (Korsgaard et al. 1998, Spiegelhalter et al. 1996, Xue and Ding 1999, Ripatti

and Palmgren 2000, Do et al. 2000, Scurrah et al. 2000). This hypothesis does not imply that

the average frailty in the population is equal to one (E (log (Z)) 6= log (E (Z))), as originally

assumed in the …rst formulations of frailty models. Thus, in our case, the estimated variance

and correlation refer to the frailty variable itself, instead of to its logarithm.

Finally, we assume that the two frailties in each pair have the same variance σ2, because of

the symmetry of twin data, which are the object of applications in the present paper.

Hence, we deal with the following distribution of the vector of frailties:

2
4 Zi1

Zi2

3
5 » LogN

0
@

2
4 1

1

3
5 ,

2
4 σ2 ρσ2

ρσ2 σ2

3
5

1
A i = 1, ..., n (30)

with logN denoting the bivariate log-normal distribution. This can be obtained by assuming a

bivariate normal distribution on the logarithm of the frailty vector

2
4 Wi1

Wi2

3
5 = log

2
4 Zi1

Zi2

3
5

whose parameters are some functions of the frailty parameters σ2 and ρ (see for example

Hutchinson and Lai 1991):

2
4 Wi1

Wi2

3
5 » N

0
@

2
4 ¡1

2 log
¡
σ2 + 1

¢

¡1
2 log

¡
σ2 + 1

¢

3
5 ,

2
4 log

¡
σ2 + 1

¢
log

£
ρσ2 +1

¤

log
£
ρσ2 + 1

¤
log

¡
σ2 +1

¢

3
5

1
A i = 1, ...,n (31)
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with N denoting the bivariate normal distribution.

2.4 Quantitative genetics models

The lognormal correlated frailty-mixture model described in Section 2.3 will be applied (see

Section 4) to combined data for monozygotic and dizygotic twins, leading to distinct estimates

of the correlation coe¢cient ρ for the two groups of twins. We will refer to these two correlation

estimates with ρM and ρD, respectively for monozygotic and dizygotic twins. As we have already

pointed out in Section 1, a di¤erence in the estimated correlation between cotwins’ frailties for

the two groups of twins can give important suggestions in the attempt to estimate the role

of genes in the susceptibility towards the disease. In particular, when ρM > ρD, one can say

that, according to the model, individuals who are more similar from a genetic point of view -

monozygotic twins - also present a larger correlation in their propensities to develop a breast

cancer. This result is generally interpreted as an evidence of the role played by genetic factors in

determining the individual susceptibility towards a disease. Following an approach introduced

by Yashin and Iachine (1995), we adopt here quantitative genetic equations (Falconer 1990) in

order to quantify the role of genetics and environment in determining the propensity to develop

a breast cancer, and in order to give an estimate of heritability of the disease.

Quantitative genetics models (Falconer 1990) are based on the decomposition of a pheno-

typic trait into a sum of di¤erent components, which are supposed to be independent. The

interdisciplinary approach introduced by Yashin and Iachine (1995) consists in identifying the

phenotype with the frailty variable (Z).

Let the frailty be represented by:

Z = A +D + I + C +E (32)

where A represents ’additive genetic’ e¤ects, D corresponds to ’dominance genetic’ e¤ects, I

denotes ’epistatic genetic’ e¤ects, C and E stand for ’common environmental’ and ’uncommon

environmental’ e¤ects, respectively. All factors are assumed to be independent. Equation (32)

and the independence assumption lead to an additive decomposition of the frailty variance and
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of the correlation coe¢cient between cotwins’ frailty:

1 = a2 +d2 + i2 + c2 + e2 (33)

ρ = ρAa2 + ρDd2 + ρIi2 + ρCc2 + ρEe2 (34)

where lowercase letters a2, d2, i2, c2, e2 indicate the proportions of the total variance σ2

associated with the correspondent components of frailty (A, D, I , C and E), and ρk (k =

A,D,I,C,E) represent correlations between respective components within a twin pair.

Standard assumptions of quantitative genetics models specify di¤erent values of ρk (k =

A,D,I,C,E) for monozygotic and dizygotic twins. In the case of monozygotic twins ρk = 1,

k = A, D, I, C and ρE = 0, while for dizygotic twins ρA = 0.5, ρD = 0.25, ρI = m, ρC = 1,

ρE = 0 and 0 · m · 0.25 is an unknown parameter (Falconer 1990).

Not all parameters of the genetic decomposition of frailty can be estimated simultaneously.

The model in fact reduces to three equations (two relationships (34) for monozygotic and

dizygotic twins and one constrain (33)) allowing us to estimate no more than three parameters

at the same time (more components could be introduced if data about more then two family

members were available). Thus, di¤erent genetic models can be considered according to di¤erent

choices on the decomposition of frailty (see for example Yashin and Iachine, 1995).

In particular, the following systems of equations:

8
>>><
>>>:

ρM = a2 + c2

ρD = 0.5a2 + c2

1 = a2 + c2 + e2

8
>>><
>>>:

ρM = a2

ρD = 0.5a2

1 = a2 + e2

8
>>><
>>>:

ρM = a2 + d2

ρD = 0.5a2 +0.25d2

1 = a2 +d2 + e2

(35)

correspond to the ACE, AE and ADE model, respectively. Inverting the systems, it is easy to

see how, for each model, it is possible to calculate an estimate of genetic parameters from the

estimated correlations ρM and ρD:

8
>>><
>>>:

a2 = 2(ρM ¡ ρD)

c2 = ρM ¡a2

e2 = 1 ¡ a2 ¡ c2

8
<
:

a2 = ρM = 2ρD

e2 = 1 ¡a2

8
>>><
>>>:

d2 = 2 (ρM ¡ 2ρD)

a2 = ρM ¡d2

e2 = 1 ¡a2 ¡ d2

(36)
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Both censored One censored None censored Total % of Individual a¤ected
MZ 4304 335 33 4672 0.0429
DZ 7236 625 35 7896 0.0432
Total 11540 960 68 12568 0.0431

Table 1: Composition of the dataset by zygosity and censoring status. Swedish Twin Registry.

3 The data

In this analysis we use breast cancer data from the Swedish Twin Registry. First established

in the late 1950s to study the importance of smoking and alcohol consumption on cancer

and cardiovascular diseases whilst controlling for genetic propensity to disease, it has today

developed into a unique source. Since its establishment, the Registry has been expanded and

updated on several occasions, and the focus has similarly broadened to most common complex

diseases.

At present, the Swedish Twin Registry contains information about two cohorts of Swedish

twins referred to as the’ old’ and the ’middle’ cohort. The old cohort consists of all same-sexed

pairs born between 1886 and 1925 where both members in a pair were living in Sweden in 1959.

In 1970 a new cohort of twins born between 1926 and 1967, the middle cohort, was compiled.

We have included both cohorts in our analysis and looked at a total of 12568 pairs of female

twins. The data are described in Table 1, categorized according to the censoring status. The

event under study is the onset of breast cancer. If a woman did not develop breast cancer or she

was died during the follow-up, the corresponding observation is censored. As we can see, about

4,3% of the women involved in the study developed a breast cancer. Very similar proportions

are registered for monoziygotic and dizygotic twins.

For a comprehensive description of the Swedish Twin Registry database, with a focus on

the recent data collection e¤orts and a review of the principal …ndings that have come from the

Registry see Lichtenstein et al. (2002).
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4. Results

In this study, Bayesian Markov Chain Monte Carlo (MCMC) methods have been adopted

in order to estimate the lognormal correlated frailty-mixture model described in Section 2.3. In

the Bayesian framework the model is seen as a hierarchical model. The likelihood function (28)

represents the …rst level; at the second level we have parameters characterizing the likelihood,

i.e. the susceptible fraction p, the frailty variables Zij (i = 1, ...,n ; j = 1, 2) and the Gompertz

parameters a and b. Each one of these parameters is supposed to follow some ’prior’ distribution;

in particular, the distribution of the vector of frailties [Zi1,Zi2]T is a lognormal distribution

with vector of means equal to one, correlation ρ and common variance σ2 (equation (30)). The

other parameters are supposed to follow a ’noninformative’ distribution, that is a distribution

which is ‡at in the reasonable range of values of each parameter. Finally, at the third level of

the model we have the so-called ’hyperparameters’, which are in this case parameters σ2 and

ρ of the frailty distribution. A Bayesian hierarchical model, as the one described above, can

not be estimated using traditional Bayesian techniques, which would require the calculation

of the expected value of the marginal distribution of each parameter, giving observed data

(marginal ’posterior’ distribution). Markov Chain Monte Carlo (MCMC) methods have recently

been introduced in order to give a numerical solution to Bayesian models that can not be

estimated analytically. They consist in generating a set of Markov chains whose joint stationary

distribution corresponds to the joint posterior of the model. Synthetic values (mean, median)

of the marginal Markov chain of each parameter can be considered as good approximations of

the Bayesian estimate.

In our study calculations are performed within the software WinBugs 1.4 (Spiegelhalter et

al. 1999). This one is a Bayesian software allowing to estimate hierarchical models with the

help of MCMC algorithms.

Results of the lognormal correlated frailty-mixture model (MODEL 2) are summarized in

Table 2, and compared with the ones obtained without taking into account the unsusceptible

fraction, that is with the constraint p = 1 (MODEL 1). For more details about the lognormal

correlated frailty model described in the …rst row of Table 2, see Locatelli et al. (2004).

As we can see from the table, when the unsusceptible fraction is taken into account, the

estimate of the frailty variance gets smaller, while the estimates of correlation between cotwins’
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frailties get larger for both monozygotic and dizygotic twins. In the model with long-term

survivors (MODEL 2) the susceptible fraction is estimated around 0.11, which means that only

10% of the population will experience the event before the end of the complete period of risk.

Thus, according to the model, besides the proportion of women (4%) who did experience the

event (a priori susceptible fraction), another 6% would have developed a breast cancer, if an

early censoring had not occurred. Our estimate of 0.11 is smaller than the one obtained by

Wienke et al. (2003) with the gamma assumption. Using a subset of the data that are the object

of our application (the ’old cohort’ of the Swedish Twin Register) they obtain an estimate of

the susceptible fraction around 17%. Nevertheless an estimate of 0.11 is perfectly in the range

of the estimated probabilities of developing a breast cancer, obtained by Farewell (1977) for

di¤erent combinations of four risk factors.If none of the risk factors is present, such probability

is estimated around 0.015; if all are present, the estimate increases to 0.272. The mean of the

16 estimated probabilities is around 0.1.

As we have pointed out before (Section 2.4), results in terms of correlation between frailties

in pairs of monozygotic and dizygotic twins can be taken as starting point for further consider-

ations about the in‡uence of genetic factors on the susceptibility towards the event of interest.

The larger estimate of ρ for monozygotic twins (Table 2) provides an evidence of the importance

of genetics in determining the individual propensity to develop the disease. We consider here

three genetic models presented in Section 2.4: the ACE, the AE and the ADE model. If we

look to systems (36), it is possible to recognize that both the AE and the ADE models are not

compatibles with our results in term of correlation estimates (Table 2, MODEL 2). In the AE

model, parameter a2 is at the same time equal to the correlation for monozygotic twins (ρM) and

two times the correlation for dizygotic twins (ρD). But in our case ρM = 0.78 6= 2 ¢ 0.56 = 1.12.

If we consider the ADE model, we get d2 = 2 (ρM ¡ 2ρD) = 2 (0.78 ¡ 1.12) < 0, which is of

course impossible. The model that seems to better represent results of Table 2 is a model in-

cluding additive genetic, common environmental and uncommon environmental e¤ects (ACE).

The estimates of parameters of the ACE model can be found in Table 3 (MODEL 2).

In the simpler model without the unsusceptible fraction (MODEL 1), analogous consider-

ations lead to choose an ADE model (for details see Locatelli et al 2004). From Table 3 we

can observe that, when the unsusceptible fraction is included, the estimate of heritability grows
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a b σ2 ρM ρD p
MODEL 1 2.54E-5 0.0725 45.19 0.3107 0.1044
(p = 1) (3.24E-6) (0.0025) (17.04) (0.0456) (0.0967)
MODEL 2 2.17E-5 0.13 33.73 0.7859 0.5769 0.1099

(2.17E-5) (0.005) (10.42) (0.122) (0.1459) (0.0066)

Table 2: Results of a correlated frailty model (MODEL 1) and a correlated frailty-mixture
model (MODEL 2) applied to Swedish twin breast cancer data. Convergence achieved after
50,000 iterations

a b σ2 a2 d2 c2 e2 p
MODEL 1 2.52E-5 0.0719 48.30 0.1273 0.1491 0.7239
(p = 1) (3.16E-6) (0.002) (16.7) (0.086) (0.100) (0.084)
MODEL 2 2.10E-5 0.1364 38.07 0.5268 0.3039 0.1693 0.11

(5.08E-6) (0.006) (13.64) (0.22) (0.2179) (0.051) (0.006)

Table 3: Results of three genetic models applied to Swedish twin breast cancer data. Conver-
gence achieved after 50,000 iterations

from less than 0.3 (a2 + d2 in MODEL 1) to more than 0.5 (a2 in MODEL 2).

5. Discussion

In the present paper, a correlated frailty-mixture model (Section 2.3) has been adopted

to analyze the onset of breast cancer in a population of female Swedish twins. A Gompertz

assumption is made in order to model the baseline hazard function. The vector of frailties is

assumed to follow a log-normal distribution, which is one of the most ‡exible in multivariate

modeling and especially when we are interested in introducing a correlation between frailties,

as in the case of the correlated frailty model. Mixture models (Section 2.2) allow to introduce

in traditional survival models the possibility that a fraction of the study population is not sus-

ceptible to the event of interest (long-term survivors). With the frailty component, susceptible

individuals are allowed to be heterogeneous in their propensity to experience the event. When

the model is applied to twin data (Section 3), very interesting interpretations can be given to the

results, by applying quantitative genetics equations (Section 2.4). One of the most important

concerns of the paper is to verify if the introduction of long-term survivors in the model leads

to di¤erent estimates of the correlation between the frailty variables within a twin pair and to

19



di¤erent heritability estimates. We found that the individual heterogeneity in the susceptibility

towards breast cancer is extremely high and the correlation between frailties in a twin pair is

larger for monozygotic than for dizygotic twins. Individuals who are more similar from a genetic

point of view, monozygotic twins, also present a larger connection in terms of frailty towards

breast cancer. This …nding provides an evidence of a genetic in‡uence on the breast cancer

propensity. In fact, if genetic factors do in‡uence the individual susceptibility towards breast

cancer, we expect to see a higher correlation between frailties in MZ twins, who are genetically

identical, than in DZ twins who, on the average, have just half of their genes in common. When

the unsusceptible fraction is taken into account, the heterogeneity estimate goes down while the

estimated correlations between cotwins’ frailties increase for both monozygotic and dizygotic

twins, Table 2). Thus, when we include the possibility that a fraction of the population is

not susceptible to experience the event, remaining individuals are less heterogeneous in their

propensity to develop the disease and, within a pair, the two twins show a higher correlation

in their susceptibility towards breast cancer. Wienke et al. (2003) obtain very similar results,

with a di¤erent assumption on the frailty distribution (gamma instead of lognormal), working

on a subset of the data used in our application (the ’old’ cohort of the Swedish Twin Register).

They also adopt a maximum likelihood, instead of a MCMC estimation procedure.

In our study we also investigate the e¤ect of introducing the unsusceptible fraction on the

genetic decomposition of frailty. As we have pointed out before (Section 2.4), with the help of

quantitative genetics equations, it is possible to estimate the extent of the genetics-related part

of the individual propensity to experience the event. Such estimate, which is often referred to

as the ’heritability’ estimate, is around 30% when the unsusceptible fraction is not taken into

account. It increases to 50% including long-term survivors into the model.
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