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Abstract

Demographers have shown that there are regularities in mortality change over time, and have
used these to forecast changes due to population aging. Such models leave out potential eco-
nomic feedbacks that should be captured by dynamic models such as the general-equilibrium,
overlapping-generations model first studied by Yaari and Blanchard. Previous analytical and
simple numerical work by economists has focused on comparative statics and used simplistic
representations of mortality, such as the assumption of a constant age-independent death
rate, or some parametric approximation to a survival curve. We show that it is straightfor-
ward to analyze equilibria in such models if we work with the probability distribution of the
age at death. US and other data show that this distribution can be plausibly described by
a normal distribution – for this case we obtain analytical results. For the general case we
have numerical results. We show that a proper accounting for the uncertainty of when one
dies has significant qualitative and quantitative effects on the equilibria of such economic
models. There are, in turn, significant lessons to be drawn for models of future fiscal policy.



1 Introduction

Mortality rates in the U.S. have been declining for over a century. In figure 1,1 we combine
historical data and forecasts to show past and expected future increases in cohort life ex-
pectancy at birth. Demographic aging in the US, as in many other countries, is due to both
this decline of death rate and swings in fertility rate leading to large birth cohorts as in the
US baby boom.2
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Figure 1: Cohort Life Expectancy in U.S.

Demographic aging in the industrialized countries has stimulated much work on the
economic effects of demographic change. The economic setting for such analyses, beginning
with Yaari(1965) and Blanchard (1985), is a general equilibrium model with overlapping
generations. Published work on the effects of population aging in such models has typically
sacrificed the details of age-dependent mortality in order to make analytical progress. Indeed,
observed mortality patterns are bracketed by two stylized patterns that have been made
in the past. The first assumes that all persons die at a fixed age and studies the effect of
increases in this age of death, as in Futagami and Nakajima (2001). The second follows Yaari
and Blanchard in assuming a fixed age-independent death rate, as in Kalemli-Ozcan, Ryder
and Weil (2000). A more realistic two-parameter survival function was used by Boucekkine,
Croix and Licandro (2002), but their function has limitations that we will discuss.

We study economic steady states in the overlapping-generations framework including
age-dependent mortality decline and economic feedback. Our economic assumptions are
most similar to those used by Kalemli-Ozcan, Ryder and Weil (2000). We assume constant

1The data before 1996 is history data of U.S.. The data after 1996 is forecasted by Lee-Carter Model
(Lee and Carter, 1992).

2US fertility rates are analyzed and projected in Lee and Tuljapurkar (1994).
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relative risk aversion utility function and use a aggregate Cobb-Douglas production function.
To study schooling, we choose a wage profile that is only a function of years spending in
school. Our focus is on the realistic treatment of mortality in modern populations, and we
have three goals.

First, we show that Yaari’s formulation neatly incorporates any realistic mortality pat-
tern, if we work in terms of the probability distribution of the age at death (we call it the
death age). This approach naturally allows us to think about individual decision-making
in response to life extension, in which the average death age increases; and changes in the
uncertainty of the timing of death which, as Yaari pointed out, are described by changes in
the variance of the death age. to yield an analytical treatment of mortality decline in the
industrialized countries. Second, we summarize evidence that mortality decline in the 20th
century has resulted in a tightening of the distribution of the death age in all industrialized
countries. Indeed, we show that this distribution can be usefully approximated by a normal
distribution. Finally, we use a normal distribution for death age to obtain analytical results
for the equilibrium in our model. We show that the use of a realistic mortality pattern yields
significantly different implications, relative to existing stylized studies, for the effect of aging
on consumption, interest rate, wage and wealth. We present numerical results that show the
accuracy of the normal approximation.

Our work is only a step towards a fully demographic analysis because we assume, as
have past studies, that birth rates are fixed, and because we assume that the population age
structure is stationary.

2 Modelling age patterns of mortality

2.1 Alternative Models of Mortality

At time z define the instantaneous death rate µ(s, z) at age z − s for members of a cohort
(generation) born at time s. Survivorship l(s, z) is the probability that an individual from
a cohort born at time s will be alive at time z. Defining T to be the random age at death,
the probability density of T is given by the product φ(s, z) = µ(s, z) l(s, z). If we assume
that death rate µ is independent of age, as in many economic analyses, we have exponential
survivorship, and an exponential density for T . If we assume that everyone dies at the same
age T0, the survivorship function l is a step function, constant at l = 1 until age T0, and
falling to l = 0 thereafter; the distribution of T is a delta function at T0.

Demographers have studied extensively the age pattern of mortality. In modern indus-
trialized countries, deaths mainly occur at ages over 45 years, and death rates are falling at
all ages including old ages (i.e., ages 65+ and 85+). Since most death is increasingly con-
centrated at late ages, the shape of survivivorship changes rapidly at these ages. In terms
of the distribution of death age T , the mean age at death has been increasing while the
variance of the age at death has been decreasing, as shown for several countries by Wilmoth
and Horiuchi (1999).

Past stylized assumptions about mortality contrast sharply with realistic patterns of
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mortality. We can see the differences clearly by comparing three mortality patterns: age-
independent constant death rate, a fixed death age, and US projections. We compare these
by displaying three functions, death rate µ as a function of age, survivorship l as a function
of age, and the probability and distribution φ of death age in figure 2. The plots are shown
for a life expectancy (i.e., average age at death) of 80 years. Assumptions of a constant
death rate or a fixed death age are certainly analytically convenient, but neither captures
the essential age-dependance of realistic death rates.
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Figure 2: Alternative models of mortality

A recent paper by Boucekkine, Croix and Licandro (2002) does a better job of modeling
mortality than the two stylized assumptions we have considered. They fit realistic survival
probability using a two parameter, age-dependent survival probability l. Although their
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model yields shapes of death rate and survival curve that are approximately right, their
model generates a density function φ(a) of death age which always increases with age. This
behavior contradicts the fact that the empirical distribution has a hump shape with a well-
defined peak in modern industrial countries such as U.S. and Sweden.3

2.2 Using Mortality Models in OLG Models

In the overlapping-generations framework, a major analytical task is to aggregate individual
consumption and saving across cohorts. As Yaari showed, one can use either the functions
µ and l together, or simply work with the distribution φ of the death age. The stylized
assumptions of past studies have, we believe, aimed to yield analytically tractable form of µ
and l. Instead, we propose to work directly with φ, and as we will show, makes possible the
use of richer and more realistic analytical models.

Let φ(x) be the distribution function of death age T , age-dependent survival curve l(a)
is

l(a) =

∫ ∞

a

φ(t)dt (1)

In the analysis of OLG models, we need to aggregate variables such as consumption and
saving, using as weights the probabilities of death. A typical aggregate of some function j(a)
of age a is defined with respect to survivorship,

J =

∫ ∞

0

j(x)l(x)dx =

∫ ∞

0

j(x)

∫ ∞

x

φ(t)dtdx (2)

But a change the order of integration turns this into

J =

∫ ∞

0

∫ t

0

j(x)dxφ(t)dt = ET [

∫ T

0

j(x)dx] (3)

This transformation, which Yaari performed in the reverse direction, expresses the ag-
gregate as an expectation over the distribution of death age T . We see immediately that
a variety of analytical forms of the distribution φ can lead to tractable aggregations. Fur-
thermore, the details of mortality change in industrialized countries in the past 50 years are
accurately captured by a relatively choice of φ, as we now show.

2.3 Distribution of death age

To describe cohort mortality for cohorts that are still alive, we must use a forecasting model
for mortality, specifically, the model of Lee and Carter (1992). Distribution curves of death
age based on their model shows a linear relationship between life expectancy e0 and variance
of death age v0 as in figure 4. When life expectancy increases, the variance of death age de-
creases almost linearly, consistent with the study of Wilmoth and Horiuchi (1999). Wilmoth

3See Wilmoth and Horiuchi (1999).
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and Horiuchi report that the standard deviation of population death age has decreased from
about 29 in 1901-1905 to about 17 in 1990-1995. This trend is not only true in U.S. but
also true in many other countries such as Sweden and Japan. In Sweden and Japan, the
standard deviation has decreased to about 14 in 1991-1995. The Lee-Carter model and U.S.
historical data together yield the linear relationship

v0 = B0 + B1e0 (4)

where B0 = 2582 and B1 = −26.7.4

Turning to the shape of the distribution φ of the death age T , we see from figure 3 that
death age for US cohorts is distributed roughly as a normal distribution together with a long
but modest left tail.

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Distribution of death age

Life Expectancy

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

Figure 3: Distribution of U.S. cohort life expectancy for cohort 1950 and 2010.

It turns out that the left tail can be ignored in the analysis we do here, as we later
demonstrate. We thus propose to approximate φ simply by a normal distribution,

φ(a) =
1√
2πσ

e−
(a−e0)2

2σ2 .

The corresponding survivorship is

l(a) = 1− [Φ(
a− e0

σ
)− Φ(−e0

σ
)]

4This regression is based on the historical data and our forecast of U.S. population data. The R2 of this
regression is 0.985.
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and the death rate may be obtained as

µ(a) = φ(a)/l(a)

This approximation is much more realistic than the stylized assumptions of constant
death rate or a fixed death age. A major advantage of this approach is that the parameter
e0 captures the length of life whereas the standard deviation σ is a direct measure of the
uncertainty in the age at death. These parameters enable us to examine the separate effects
of the need to spread consumption over a longer life, and the need to adjust savings as a
precaution against living for fewer or more years than one might expect. In addition, we can
study economic responses to the particular trajectory of increasing e0 and decreasing σ that
is seen in the past data.
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Figure 4: Variance of death age vs. life expectancy

The normal approximation does not capture two aspects of historical death rates: the
long left tail mentioned above, and high death rate at very early ages between 0 and 1 year.
Historically, death rates have fallen faster at the youngest ages, and this is likely to reduce
the error we make with a normal assumption. However, our approach allows us to use many
alternatives should we wish to capture the details we have left out of the simple normal
assumption. For example, a better approximation is the two term distribution function

f(T ) = α · λe−λT + β
1√
2πσ

e−
(T−ν)2

2σ2

In this model, there are five parameters, α, β, ν, σ and λ. To make f(T ) a distribution
function, we require α + β = 1. We can fit this model to the data, and more important, we
can also produce analytical solutions for this approximation (we do not discuss them here).
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3 Life cycles and the economy

We use a continuous time overlapping generations model based on Yaari (1965) and Blan-
chard (1985). We assume that the population age structure is stationary, with a constant
birth rate b, a constant total population size N and a probability distribution φ for an indi-
vidual’s age at death. We use a Constant Relative Risk Aversion(CRRA) utility function,

u(c(z)) =
c(z)1−γ

1− γ
(5)

where γ is the relative risk aversion coefficient and c(z) is consumption at time z. We
set the subjective discount function for people at age a to be e−θ·a where θ is a rate of time
discount. In this model, the only source of uncertainty is the age at death, and the expected
utility to be maximized is

∫ ∞

t

l(z − t) · u(c(z)) · e−θ·(z−t) · dz (6)

We assume the economy is in a steady state, and that aggregate output follows the
Cobb-Douglas production function,

Y = AKαH1−α (7)

where K denotes aggregate physical capital stock and H denotes total human capital. A is
a positive constant representing productivity level and 0 < α < 1. The equilibrium interest
rate r and the wage level w are determined by the marginal rates of change of output with
respect to capital and human capital.

Human capital here depends on the number of years of schooling. We assume that
individuals choose an age as when they finish schooling, and that they then work until a
fixed age of retirement ar. The relative wages of an individual only depend on years of
schooling

y(as) = w ef(as) (8)

when as ≤ x ≤ ar and zero otherwise.5 With this assumption aggregate human capital
is just ef(as) L where L is the total labor force between ages as and ar.

The random death age T has a known distribution, and we use equation (3) to define a
series of aggregated functions. These aggregates provide explicit equilibrium conditions for
the model.

g(z) ≡ ET [ezT ] (9)

5This is the same assumption as in Kalemli-Ozcan, Ryder and Weil (2000). A useful extension would
incorporate a hump shaped age profile, for example at at age x wages are

y(x) = w ef(as) (a1e
−β1x + a2e

−β2x)

where β2 ≥ β1 ≥ 0, a1 ≥ 0 ≥ a2. This form of human capital is initially an increasing function of age and
then a decreasing function of age. It is possible to extend our analytical results to this case.
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P (z) ≡ ET [ez(T∧as)] (10)

Q(z) ≡ ET [ez(T∧ar)] (11)

λ(a) ≡ ET [T ∧ a] (12)

Notice when as = 0, P (z) = 1. When ar = ∞, Q(z) = g(z). λ(∞) = ET (T ) ≡ e0 where
e0 is life expectancy. In the Appendix A, we calculate the closed form solutions for all g, P ,
Q, and λ under the assumption that death age T is normally distributed.

For a fixed level of schooling as the standard optimality conditions yield an optimal
individual lifetime consumption path c(a)

c(a) = c0e
ka, (13)

and the budget constraint yields consumption at birth c0

c0 =
(k − r)wef(as)

r
· P (−r)−Q(−r)

g(k − r)− 1
. (14)

Here
k ≡ (r − θ)/γ. (15)

Thus the initial consumption c0 is a function of as, and the relevant condition leads to
an equation for the optimal level of schooling

f ′(as)[P (−r)−Q(−r)] +
dP (−r)

das

= 0 (16)

Finally, the aggregate consumption is

C(t) =
bN(k − r)wef(as)

rk
· P (−r)−Q(−r)

g(k − r)− 1
· [g(k)− 1] (17)

As shown in Appendix B, we find that the aggregate human capital H and aggregate
capital stock K are:

K(t) =
bN

r
wef(as)ϕ(r, e0, σ0)

H(t) = bNef(as)[λ(ar)− λ(as)] = bNef(as)ξ

where

ϕ(r, e0, σ0) =
r − k

kr

(Q(−r)− P (−r))(g(k)− 1)

g(k − r)− 1
− λ(ar) + λ(as) (18)

and
ξ = λ(ar)− λ(as)

These lead to
K

H
=

wϕ(r, e0, σ0)

rξ
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The first order conditions of production function give

ϕ(r, e0, σ0) =
αξ(r, e0, σ0)

1− α
(19)

Substitute ϕ and ξ into equation (19), it becomes

r − k

kr

(Q(−r)− P (−r))(g(k)− 1)

g(k − r)− 1
=

λ(ar)− λ(as)

1− α
(20)

By solving equations (16) and (20), we can find age of schooling as and equilibrium
interest rate r. All the other variables can be found accordingly.

The two equations (16) and (20) characterize the steady state of the economy. Note that
these two equations do not depend on any specific forms of distribution function of death
age T .

4 Comparative statics: the simplest case

In the simplest case, people work for a fixed wage w over their entire lives. The goal
of our analysis is to understand how changes in the length and uncertainty of life affect
consumption and wealth over the life cycle. We present analytical and numerical results
based on the following assumption.

Assumption 1. The death age is normally distributed and

γ = 1, θ = 0.03, α = 0.03, Tmax = 120

where Tmax is the maximum possible age at death.

The value of Tmax is reasonable for current and projected mortality.6 The value of relative
risk aversion coefficient is chosen to be 1. This is equivalent to assume a log utility function.
Since we will compare our results with those under the assumptions of constant death rate,
fixed death age and fitted distribution of death age, in particular, the work of Kalemli-Ozcan,
Ryder and Weil (2000), we choose the same values of parameters θ and α as what they have
calibrated.

One of the main questions in the OLG model is: how do consumption and wealth change
as a population ages? It is also interesting to examine other macroeconomic variables such
as interest rate and wage. To answer these questions, we need first to characterize demo-
graphic aging. In the stylized assumptions of constant death rate or a fixed death age, there
exists only one parameter which can not be used to capture the important two aspects of
demographic aging: life expectancy and variance of death age. Although a two parameter
model has been proposed by Boucekkine, Croxix and Licandro (2002), as we have discussed
in the former section, their density function of death age does not capture the empirical dis-
tribution which there is a hump shape around age 80. In Assumption 1, the age at death is

6See Wilmoth, Deegan, Lundstrom, and Horiuchi (2000) for details.
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assumed normally distributed. This gives us a convenient way to focus on the two important
aspects of demographic aging.

In this section, we first study the effects of changing life expectancy on consumption and
wealth. Then we explore the effects of changing variance of death age. Finally, we examine
the joint effects of these two important aspects of demographic aging and compare our results
with those stylized assumptions in the literature.

4.1 Understanding changes in life expectancy

Suppose life expectancy increases and variance of death age is constant. What happens to
aggregate wealth? To answer this question, we need first to study individuals’ wealth over
their life cycle. In Yaari-Blanchard framework, there exists a life insurance company. Indi-
viduals contract to make a payment contingent on their death. In exchange, they will receive
a fair rate of payment from insurance company.7 Although it is not necessary for individ-
ual net asset to be a monotone increasing function of age, individual net asset eventually
increases when age is large due to the existence of insurance company to remove bequest
motive. Thus, individual net asset between birth and death has a trend to increase in old
age. As life expectancy increases, birth rate is adjusted such that total population size is
fixed. Therefore, the aggregate human capital H is fixed. As a result, there is a higher
percentage people in old age. Since the old have much larger asset than the young, the total
wealth increases as life expectancy e0 increases. This analysis is consistent with what we
find in figure 5.

Figure 5 shows surface plots of interest rate, consumption, wage, wealth with respect to
life expectance and variance of death age. Note that in the simplest case, as total wealth
changes, wage will change in the same direction and interest rate will change in the opposite
direction. This can be derived analytically using the first order conditions of the Cobb-
Douglas production function to find

w(t) = A(1− α)(
K(t)

H(t)
)α (21)

r(t) = Aα(
K(t)

H(t)
)α−1 (22)

In the simplest case, the aggregated human capital H(t) is constant. Since 0 < α < 1,
wage will change in the same direction as that of total wealth K(t) and the interest rate will
change in the opposite direction.8

7This fair rate is the cohort death rate. Since the cohort size is large, the cohort size is deterministic even
though the individual death age is uncertain.

8In the simplest case with Assumption 1, we find that if there exists a steady interest rate in the rage
(θ,∞), it may not be unique as shown in Appendix C. This is very different from other cases such as the
constant death rate in Kalemli-Ozcan, Rder and Weil (2000). Although the steady interest rate is not unique,
there is only one in the reasonable region. In particular, we choose minimum value of the solved interest
rates which are greater than θ as the steady interest rate. The steady state values for other variables can
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Figure 5: The simplest case: understanding changes in life expectancy and variance of death
age
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Initial consumption c0 is an increasing function of life expectancy e0 if variance of death
age v0 is fixed. As life expectancy increases, individual’s lifetime labor income increases since
wage w increases and the steady interest rate decreases. [As e0 increases, survivorship l(a)
increases for all age a and the interest rate r decreases]. Thus, lifetime consumption must
also increase because it is equal to lifetime labor income as in equation (23).

co

∫ ∞

0

e−θal(a)da = w

∫ ∞

0

e−rsl(s)ds (23)

Therefore, as life expectancy increases, total income increases which implies higher initial
consumption c0.

Total consumption C is an increasing function of life expectancy e0 given a fixed vari-
ance v0 of death age. As e0 increases, there are more old people in the population. The
consumption for individual at age a is c(a) = c0e

(r−θ)a. Thus the consumption for the old is
much larger than the consumption for the young. This implies that the total consumption
C increases as life expectancy increases.

4.2 Understanding changes in variance of death age

We have studied the effect of life expectancy given that the variance of death age is constant,
what is the effect of changes in the variance of death age for a fixed life expectancy on
aggregate wealth, consumption and others? Again we start our analysis by studying the
effects on aggregate wealth.

We find that aggregate wealth will increase generally. Assume that life expectancy is not
small and variance of death age is not very high.9 As variance increases, there is a higher
probability for people to die at old age and at young age. Since young people have much
less wealth than the old people, the loss at young age is less than gain at old age and total
wealth will increase as variance of death age increases.

Initial consumption c0 will increase if variance of death age T increases given life ex-
pectancy e0 is fixed.10 This can be seen as follows. Note that as v0 increases, wage w
increases and the steady interest rate r decreases.11 To make lifetime consumption equal
to lifetime labor income, we must have that initial consumption c0 increases. This is also
clear from the settings of the model. As variance v0 increases, early death rate increases.

be uniquely decided by the steady interest rate in the simplest case. We can also derive the response of the
steady interest rate to a change in the life expectancy for the parameters we have studied when the variance
of death age is fixed. As shown in Appendix C, we find dr/de0 < 0

9Total wealth may decrease when life expectancy is small and variance of death age is high. Under the
case that life expectancy is low and variance of death age is high, the wealth of old people is higher than
young people but the difference becomes smaller. As variance of death age increases at high level, the loss
at young dominates the gain from old people. Moreover, the normality assumption may not hold since the
variance is too high relative to its low life expectancy.

10Only for the case that life expectancy is not small or variance of death age is not too high.
11In Appendix C, we show that the derivative of the steady interest rate with respect to the variance of

death age for the parameter values as we have studied when the life expectancy is fixed is negative.
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The income increases for young people by both earnings from insurance company and wage.
Therefore, initial consumption level increases when variance increases.

Total consumption C is an increasing function of v0 given e0 fixed. Similar to the for-
mer argument, as variance v0 increases, there are more old people and less young people.
Although the consumption from young people decreases, the total consumption level of old
people increases a lot and is larger than the loss.

4.3 Joint effects from changing in life expectancy and uncertainty
of death age

Historical data and expected futures show that both life expectancy and variance of death
age change in the process of demographic aging. It is important to study the joint effects from
these two aspects. In this section, we show that it is exactly this joint effect which accounts
for the differences among constant death rate, fixed death age and normal distribution of
death age cases.

We first study the steady interest rate, which, as we have shown, is a decreasing function
of life expectancy and variance of death age respectively. A constant age-independent death
rate implies v0 = e2

0. As e0 increases, v0 increases. So increases in e0 and v0 will affect the
steady interest rate r in the same direction. However, the U.S. historical and expected future
data exhibits increasing e0 and decreasing v0 as in figure 4. The joint effect of these opposite
trends is a much higher steady interest rate. For the fixed death age, the variance v0 is zero.
Accordingly, wee find the highest steady interest rate r because the steady interest rate is a
decreasing function of v0.

Similar arguments apply to initial consumption c0. Note that the joint effect of life
expectancy and the variance of death age not only decreases the level of c0, it might also
make c0 decrease when e0 increases in some range.

The trend of aggregate consumption on life expectancy can be understood as follows. In
equilibrium, individual consumption c(t) = c0e

k(t−s) where k = (r − θ)/γ. Under typical
calibration, r > θ in equilibrium. Therefore, as e0 increases, the consumption of old age
population increases, and the aggregate consumption always increases. The effect of variance
of death age on aggregate consumption is similar. Under the assumption that age at death T
is normally distributed, as v0 increases, there will be more people live longer and more people
die earlier. Again, since the older will consume much more than the younger, the aggregate
consumption will increase as v0 increases. In the U.S., the effect on total consumption from
increasing life expectancy is more significant than the effect from decreasing variance of
death age and leads to increasing in total consumption.

4.4 Effects of Assumption 1

In this section, we compare the results under Assumption 1 with alternatives: constant death
rate, fixed death age, and fitted distribution of death age. Figure 6 plots the comparative
statics of steady interest rate r, total wealth K, individual initial consumption c0, aggregate
consumption C, wage w when life expectancy e0 changes under the assumption of constant
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death rate, fixed death age, normally distributed death age and fitted death rate. We
compare the exact values in table 1.
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Figure 6: The simplest case

In figure 6, the levels among constant death rate, fixed death age and fitted death rate are
quite different which is due to the different assumptions on variance of death age. It is clear
that normality assumption is closest to the fitted curve. As life expectancy becomes larger,
the survival curve becomes more rectangular. Fixed death age is also a good approximation
for large life expectancy.

Although the assumption that death age T is normally distributed is a good approxima-
tion of fitted distribution, some differences remain. In particular, the mean of death age or
so-called life expectancy is in fact not the peak of hump shape in the fitted distribution and
the distribution of death age has long left tail. Moreover, we truncate at both the high end
(ages > 120) and the low end (ages < 0) of distribution curve in our calculations. It can be
shown that the error due to this truncation is very small. To measure the calculation errors
due to these approximations, define adjustment coefficient α to be

α = 1/Φ(0, 120)
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Name Constant Death Rate Fixed Death Age Normal Distribution Fitted Distribution

H 100 100 100 100
r 0.0346 0.0463 0.044 0.0444
w 1.7662 1.5592 1.593 1.5868
K 2186.6 1443.4 1550.3 1530.3

c(0) 1.5932 1.0841 1.1648 1.1456
C 252.308 222.7485 227.5745 226.6899

Table 1: The simplest case, γ = 1, e0 = 79.8339

When e0 = 80 and v0 = 400, we find α = 1.0233 which is very close to 1. Similarly, when
e0 = 85 and v0 = 300, we have α = 1.0221 which is also close enough.12

In figure 6, it is consistent with our expectations that the level of steady values using
fitted distribution is very close to the case of normal distribution assumption of death age T .
This can also be seen easily in table 1 for life expectancy 79.8339. In table 1, the difference of
steady interest rate between normal distribution case and fitted distribution case is negligent.
So are the other variables. Constant death rate case overstates the variance of death age
which leads to a much lower steady interest rate. Fixed death age case completely ignores the
variance of death age with a highest calibrated interest rate. In figure 6, the shapes of steady
interest rate, total wealth, aggregated assumption and wage between normal distribution
case and fitted distribution case are very close except consumption at birth. Although the
consumption at births looks different, both of them capture a change from convexity to
concavity around age 70.

In Assumption 1, γ = 1 is equivalent to an assumption of a Log utility function. It is
interesting to relax this assumption to examine the effects of changing relative risk aversion
γ using a constant relative risk aversion utility function.

Figures 7 and 8 show that more risk averse (higher γ) implies less total consumption, less
total wealth and higher steady interest rate. As relative risk aversion coefficient γ increases,
people become more risk averse and are more unlikely to borrow and consume less when
they are young. The effect of γ on steady values is significant. From γ = 1 to γ = 2, steady
interest rate increases about twenty percent.

Under the normality assumption of death age, the steady interest rate is much higher
than that of constant age independent death rate. Therefore, the “risk free rate puzzle” by
Weil (1989) becomes more severe if we include age dependent mortality into the continuous
overlapping-generations model.

12We called that this is fitted distribution since the data after 1996 is projected. Our analysis cover from
1900 to 2060. Data is real between 1900 and 1996. For the other part, it is forecasted using Lee-Carter
model.
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Figure 7: The simplest case under constant death rate

5 Comparative statics: schooling and retirement

Kalemli-Ozcan, Ryder and Weil (2000) examine the relationship between schooling and in-
creased life expectancy. They find that schooling years increases as life expectancy increases.
Their conclusion is based on the stylized assumption of constant death rate. They also do
not include retirement into their model. In this section, we conduct our study using more
realistic mortality rate. We also take account of retirement in our analysis.

5.1 Schooling without retirement

To compare our results with that of Kalemli-Ozcan, Ryder and Weil (2000), we first study
the schooling case without considering retirement. We also adopt the same assumption on
income function as in their study. In particular, the function f(as) in equation (8) is defined
as

f(as) =
Θ

1−Ψ
a1−Ψ

s

where Ψ = 0.58 and θ = 0.32.
Under this assumption, steady values can be solved by two equations (16) and (20). After

steady interest rate and schooling age are found, we can calculate all the other aggregate
steady variables. The calibration results are plotted in figure 9 and summerized in table 2.

Figure 9 compares two cases under Assumption 1 with and without schooling. In the
figure, total human capital H increases, wage w decreases, and interest r increases after
schooling is introduced. In the schooling case, aggregate wealth K, aggregate consumption
C and initial consumption c0 are higher.
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Figure 8: The simplest case under normally distributed death age

Name Constant Death Rate Normal Distribution

H 1278.3 875.2
as 22.8203 15.8077
r 0.0396 0.044
w 1.6666 1.3766
K 23039 8339.4

c(0) 7.0312 2.9932
C 3043.6 1721.1

Table 2: Schooling Case, γ = 1, e0 = 79.8339

Different from the simplest case, total human capital is not constant anymore in the
schooling case. Wage will change in the same direction as the ratio of total wealth and total
human capital (K/H) instead of total wealth alone in the simplest case. Interest rate still
has the opposite trend of wage.

To understand the schooling case, it is important to understand the changes of total
human capital. On the one hand, the changes of schooling directly affect the lifetime working
length. On the other hand, the higher the schooling, the higher the function f(as) which
implies high efficient labor. Since retirement is not considered in these comparison, the total
human capital is given by

H(t) = bNET [

∫ T

as∧T

ef(as)dx]

As schooling as increases, there are two effects: ef(as) increases and the integral lower
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Figure 9: Schooling case
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bounder as ∧ T also increases. It is generally hard to say which effect is more significant.
As we know, as is usually small relative to e0 − as. In our calibration, the labor profile is
fitted with historical data which has the property that total human capital H increases as
schooling as is introduced. In other words, the effect from ef(as) dominates.

As in the simplest case, total wealth K is an increasing function of life expectancy.
However, the ratio K/H does not monotonically increase. Although the ratio of total wealth
and total human capital does not change a lot, it decreases first and then increases. Wage w
and interest rate r change correspondingly. In particular, the steady interest rate increases
first and then decreases as life expectancy increases.

One major difference between the simplest case and the schooling case is that individual
chooses schooling length to optimize initial consumption c0. However, changes of c0 depends
on w/r, ef(as) and P (−r)−g(−r) as shown in equation (14). It is generally hard to conclude
a definite trend of consumption at birth.
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Figure 10: Schooling case: schooling age

One major goal in this analysis is to answer the question: what is the relationship between
schooling age and life expectancy? We find that the schooling age is an increasing function
of life expectancy e0 as in figure 10. This is consistent with the results of Boucekkine,
de la Croix and Licandro (2002), Kalemli-Ozcan, Ryder and Weil (2000) and our common
knowledge. People want more education if they can live longer. However, again, since there
exists negative effects from the variance of death age, steady schooling years in our case is
about 6-7 years shorter than that of Kalemli-Ozcan, Ryder and Weil (2000). Note that the
optimal schooling age in our case is much lower than that of Kalemli-Ozcan, Ryder and Weil
(2000) as shown in table 2.

Another important difference between the simplest case and schooling is the steady inter-
est rate r. The steady interest rate r increases at median life expectancy and finally decreases
at high life expectancy. This is totally different from the simplest case. The increasing of
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the steady interest rate for median life expectancy is the period when the variance of death
age decreases dramatically. It seems that schooling increases the effect of the variance of
death age. Note that the total consumption C still always increases. This is again due to
the assumption that people can work until they die.

Although it is not plotted, the level difference between fitted distribution and normal
distribution is much closer than that between fitted distribution and constant death rate.

5.2 Schooling with retirement

In this section, we include retirement into the model. Different from Boucekkine, Croix
and Licandro (2002), retirement is exogenous instead of endogenous. This assumption is
reasonable since a specific retirement age is specified by law in pension system. Individual
has only highly limited control on retirement age. Since schooling affects labor income,
individual need to decide the optimal schooling age at birth under a certain pre-specified
retirement age.

To well understand schooling with retirement, we need to understand the pure retirement
effects in which schooling age is fixed. Then it will be possible to explain what we find in
schooling with retirement through both schooling and retirement effects. To understand
pure retirement effects, we choose the schooling age to be 14 and study the pure effects from
retirement.

Based on our calibrations, the case in which the retirement with fixed schooling is shown
in figure 11. When retirement age ar decreases, figure 11 shows that total human captial
H decreases. This is easy to understand since the total labor decreases and the schooling is
fixed. Accordingly, wage w increases and total wealth K decreases which are also consistent
with our intuition. Since the steady interest rate and wage always change in the opposite
direction, the steady interest rate r decreases. As the total wealth decreases, it is reasonable
that total consumption C decreases. When ar is large,13, as ar decreases, initial consumption
c0 increases.

Although it is not shown in figure 11, the main surprise is that for small ar and large
life expectancy, c0 may decrease.14 We briefly discuss this here. The argument can also be
applied to the pure schooling case with minor changes.

To simplify notation and analysis, assume γ = 1. Thus k = r − θ.

c0 =
−θ · wef(as)

r
· P (−r)−Q(−r)

g(−θ)− 1

First note that g(−θ)−1 < 0 and as is fixed, then c0 is proportional to w/r ·[P (−r)−Q(−r)].
Note also that P (−r) > Q(−r). As ar decreases, w/r increases and P (−r) = ET [e−r(T∧as)]
increases. The key is the change of Q(−r) = ET [e−r(T∧ar)]. For large ar, Q(−r) increases
but is highly limited since the change is mainly from r. However, when ar is small and life

13If we set as = 14, a large retirement age can be the age > 45.
14This is not shown in the figure 11. However, it can be found if we specify low retirement age, such as at

age 40.
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Figure 11: Retirement with fixed schooling years at 14
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expectancy e0 is large, Q(−r) is approximately e−rar . Therefore, the increases from Q(−r)
may be larger than that of P (−r) which implies P (−r) − Q(−r) may decrease. At some
points, this loss dominates the gain from K/r.

In the case of schooling with retirement, figure 12 shows the changes of the steady interest
rate, schooling and other aggregate variables with respect to changes in life expectancy and
retirement age. As life expectancy becomes larger, the effect of retirement age also becomes
more significant. This is consistent with our expectations. As life expectancy becomes larger,
more people live longer. Their living will be affected more seriously by exogenous retirement
age.

What are the effects of changing retirement age ar on other variables? For example,
how does schooling change? Figure 12 shows that schooling age is a decreasing function of
retirement age. One simple explanation is that people need more education for higher salary
so that they can pay for longer retirement life. A more detail analysis is given later.

Figure 12 also shows that dc0/dar < 0 and dC/dar > 0. As retirement age ar increases,
the initial consumption c0 will decrease. This result is counter intuitive since the partial
derivative of c0 with respect to ar is positive. However, notice from figure 12, the steady
interest rate r will increase as retirement ar increases. Again, there are negative effects be-
tween r and c0 and the substitution effect and human capital effect seem dominate.15 The
reason that dC/dar > 0 is again due to the exponential increase of individual consumption.
Although the initial start point of individual consumption c0 decreases, the rate of exponen-
tial increasing consumption increases which will eventually increase the level of consumption
of old cohorts. The aggregate effects of increasing retirement ar on consumption is still
positive.

We can also note that wage w in figure 12 decreases in ar which make senses. Similarly,
both total wealth K and total human capital H are increasing functions of retirement age.
Although it is not plotted, we also compare the case between normal distribution assumption
and fitted death rate. All the level, order and shape of curves between fitted distribution
and normal distribution are very close.

The relationship between schooling and life expectancy has been addressed in the school-
ing case without considering retirement. In the rest of this section, we focus on the relation-
ship between retirement age and schooling.

As we have observed, when ar − as is large, as ar increases, schooling as decreases.
Equivalently, as ar decreases, schooling as increases. To understand this, for simplicity and
without loss of generality, we assume γ = 1. Since retirement is considered in the comparison,
the total human capital is given by

H(t) = bNET [

∫ ar∧T

as∧T

ef(as)dx]

and consumption at birth is

15See Deaton (1992) for more discussions on interest rate and individual consumption.
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Figure 12: Complete case
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c0 =
−θwef(as)

r
· P (−r)−Q(−r)

g(−θ)− 1

As ar decreases, the total labor trends to decrease. As schooling as increases, there are two
effects. On the one hand, ef(as) increases. Since the interest rate r increases, P (−r) decreases
and Q(−r) decreases. However, since ar is quite larger than as, P (−r) − Q(−r) increases.
On the other hand, wage w decreases and the interest rates increases. w/r decreases. It is
generally hard to say which effect is more significant.

When individuals maximize their consumption at birth, they take the interest rate and
wage as given. Therefore, by assuming very low schooling age as, large retirement age ar

and high life expectancy e0, the optimization problem can be simplified to maximize

ef(as) · e−ras = ef(as)−ras

The first order condition implies that optimal schooling age as = (0.32/r)
1

0.58 . In the case
that ar decreases, without changing schooling, interest rate r decreases16 which implies a
higher schooling age as. In the case when ar increases, by first fixing schooling age, the
interest rate r increases which leads to a lower schooling age.

How to understand this intuitively? Although an individual wants to maximize its initial
consumption c0, it is unnecessarily that c0 increases due to the changes of interest rate
and wage. It is also true that increasing or decreasing of schooling does not imply any
definite changes of total wealth K and initial consumption c0. This is a general equilibrium
effect instead of a partial equilibrium effect. First, individuals face budget constraints.
Second, their consumption are decided by either initial consumption c0 or interest rate r
since c(t) = c0e

(r−θ)t. The change of retirement age first affects labor. It seems that we can
understand the changes of schooling by thinking that schooling is used to offset the human
capital changes due to changes of retirement age. In particular, without changing schooling,
the change of the human capital due to changes in retirement age makes schooling age not
optimal. The other variables overreact to the change of human capital. The whole system
can be optimized by readjusting the changes of human capital through schooling.

However, this trend is not true for low retirement age. Although it is not plotted here,
when ar is small, as ar decreases, as decreases. This can be explained as follows.

Since retirement age ar is very small, total human capital H(t) is proportional to ef(as)(ar−as).
It can be verified that this term will increase when as decreases. Therefore, when retirement
age ar decreases, if schooling is fixed, H decreases. To offset these changes, schooling as need
to decrease. Alternatively, we can also analyze as follows. When individuals maximize their
initial consumption, they take interest rate and wage as given. Therefore, by assuming very
low as, low ar, the optimization problem becomes to maximize

ef(as) · [e−ras − e−rar ] ≈ ref(as)[ar − as]

The first order condition is

0.32 · ar − as

a0.58
s

= 1

16See Figure 11.
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It is clear that retirement age ar is greater than schooling age as. Then as ar decreases,
schooling age as must decrease to satisfy this first order condition. Similarly, as ar increases,
as increases.

6 Conclusion

Our model extends previous research on overlapping-generations models of aging by including
realistic demographic mortality. We derive analytical solutions for our model in the steady
values. We can analyze other models such as those assuming constant death rate or fixed
death age directly from our results.

Analysis of the U.S. population history and forecasts suggest our assumption that the
distribution of death age is normally distributed. This assumption is not only more realistic
but also analytically solvable. In the calibrations we find that this age dependent death rate
does make dramatic different implications in many perspectives.

First we find that the steady interest rate r is always much higher than constant death
rate in all the cases. This significant difference is exactly due to the more realistic assumption
on the distribution of death age. The level differences also appear in all other macroeco-
nomic variables. In particular, we give intuitions on the effects of two important aspects of
demographic aging: life expectancy and variance of death age.

In the case of schooling, our results is very different from results in Kalemli-Ozcan,
Ryder and Weil (2000). The steady interest rate r does not monotonically decrease when e0

increases. This results in dramatically differences in many other variables.
Finally our paper studies the effect of endogenous schooling and exogenous retirement.

Several counter intuitive relations have been found. For example, the initial consumption
decreases as age of retirement increases. Another finding is that the schooling age will
decrease as age of retirement increases in general equilibrium.

Above all, the relationship between life expectancy and other macroeconomic variables is
complicated. We must take into account the variance of death age along with life expectancy.
Although our analysis has incorporated more realistic age structure and shown significant
different results, there is much more work to be done. One is to study a dynamic population
structure. Another is to make retirement age endogenous. Eventually, we would like to
introduce social security system and other public finance instruments into our model.
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Appendix

A Closed forms of P(z), Q(z) and λ(a)

In this part, we derive the closed forms of P(z), Q(z) and λ(a) under the assumption that
the distribution of age at death T is normal.

P (z) ≡ ET [ez(T∧as)]

Now we want to solve ET [ez(T∧as)].

ET [ez(T∧as)] = ET [ezT 1T<as ] + ET [ezas1T≥as ]

We calculate them separately. The first term is

ET [ezas1T≥as ] u ezas · [Φ(
Tmax − e0

σ
)− Φ(

as − e0

σ
)]

The second term is

ET [ezT 1T<as ] u
∫ Tmax

0

ezx1x<as

1√
2πσ

· e− (x−e0)2

2σ2 dx

Finally,

ET [ezT 1T<as ]ue
z2σ2

2
+ze0 · [Φ(−zσ +

as − e0

σ
)− Φ(−zσ − e0

σ
)]

Above all, we have

P (z) = ET [ez(T∧as)]ue
z2σ2

2
+ze0 · [Φ(−zσ +

as − e0

σ
)− Φ(−zσ − e0

σ
)]

+ ezas · [Φ(
Tmax − e0

σ
)− Φ(

as − e0

σ
)] (24)

Take derivative, it becomes

dP (z)

das

=
g(z)√
2πσ

e−
(as−e0−zσ2)2

2σ2 + zezas · [Φ(
Tmax − e0

σ
)− Φ(

as − e0

σ
)]− ezas

√
2πσ

e−
(as−e0)2

2σ2 (25)

A.1 The simplest case

As we know, e0 is around 80 and σ0 is around 20. Therefore, we have

P (z) = e
z2σ2

2
+ze0 · Φ(−zσ +

as − e0

σ
) + ezas · [1− Φ(

as − e0

σ
)] (26)

That is,

P (z) = g(z) · Φ(−zσ +
as − e0

σ
) + ezas · [1− Φ(

as − e0

σ
)] (27)

Take derivative, it becomes

dP (z)

das

=
g(z)√
2πσ

e−
(as−e0−zσ2)2

2σ2 + zezas · [1− Φ(
as − e0

σ
)]− ezas

√
2πσ

e−
(as−e0)2

2σ2 (28)
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A.2 Q(z)

Q(z) ≡ ET [ez(T∧ar)]

Since death age T is normally distributed, it becomes

Q(z) = e
z2σ2

2
+ze0 ·[Φ(−zσ+

ar − e0

σ
)−Φ(−zσ− e0

σ
)]]+ezar ·[Φ(

Tmax − e0

σ
)−Φ(

ar − e0

σ
)] (29)

A.3 λ(a)

λ(a) ≡ ET [T ∧ a]

where a = ar or a = as.

λ(a) = ET [T1T<a] + ET [a1T>a]

Since

ET [a1T>a] = a[Φ(
Tmax − e0

σ
)− Φ(

a− e0

σ
)]

and

ET [T1T<a] =

∫ a

0

x√
2πσ

e−
(x−e0)2

2σ2 dx

Therefore,

ET [T1T<a] = e0[Φ(
a− e0

σ
)− Φ(

−e0

σ
)]− σ√

2π
[e−

(a−e0)2

2σ2 − e−
e20
2σ2 ]

Above all,

λ(a) = a[Φ(
Tmax − e0

σ
)−Φ(

a− e0

σ
)]+e0[Φ(

a− e0

σ
)−Φ(

−e0

σ
)]− σ√

2π
[e−

(a−e0)2

2σ2 −e−
e20
2σ2 ] (30)

where a = ar or a = as.

B Calculations on K(t)

In this part, we derive the equations for aggregate wealth K(t). Note that the population
structure is stationary. Let v(a) be the net asset for a consumer at age a. By Yaari and
Blanchard, v(a) satisfies

dv(a)

da
= [r + µ(a)]v(a) + y(a)− c(a)
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Under the boundary condition v(0)=0. Note that c(a) = c0e
ka, and y(a) = wh(a) =

wef(as), as < a < ar. We can solve this first order differential equation.

v(a)e
∫ a
0 −(r+µ(m))dm =

∫ a

0

[y(x)− c(x)]e
∫ x
0 −(r+µ(m))dmdx

v(a) =
era

l(a)

∫ a

0

[y(x)− c(x)]e−rxl(x)dx (31)

which is a function of age a.
Therefore,

K(t) = bNET [

∫ T

0

v(x)dx] = bNET [

∫ T

0

erx

l(x)

∫ x

0

[y(a)− c(a)]e−ral(a)dadx]

By the definition of expectation, it becomes

K(t) = bN

∫ Tmax

0

erx

∫ x

0

[y(a)− c(a)]e−ral(a)dadx

Exchange the order of integration,

K(t) = bN

∫ Tmax

0

[y(a)− c(a)]e−ral(a)

∫ Tmax

a

erxdxda

K(t) =
bN

r

∫ Tmax

0

[y(a)− c(a)]l(a)[er(Tmax−a) − 1]da (32)

We can also write it in expectation form,

K(t) =
bN

r
ET{

∫ T

0

[y(a)− c(a)][er(Tmax−a) − 1]da} (33)

Define

φ(r, e0, σ0)≡ 1

w
ET{

∫ T

0

[y(a)− c(a)][er(Tmax−a) − 1]da}

Substitute the income y(a), it becomes

φ(r, e0, σ0) =
1

w
[ET{

∫ T∧as

0

[−c(a)][er(Tmax−a) − 1]da}]

+
1

w
[ET{

∫ T∧ar

T∧as

[wef(as) − c(a)][er(Tmax−a) − 1]da}]

+
1

w
[ET{

∫ T

T∧ar

[−c(a)][er(Tmax−a) − 1]da}]
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Note that

c0 =
(k − r)wef(as)

r
· P (−r)−Q(−r)

g(k − r)− 1
= wef(as)β

where

β =
(k − r)

r
· P (−r)−Q(−r)

g(k − r)− 1

Then

I =
1

w
[ET{

∫ T∧as

0

[−c(a)][er(Tmax−a) − 1]da}] = −ef(as)βET{
∫ T∧as

0

eka[er(Tmax−a) − 1]da}

By the definition of P (k − r), it becomes

I = −ef(as)β{erTmax

k − r
[P (k − r)− 1]− 1

k
[P (k)− 1]} (34)

For the second term,

II = ET{
∫ T∧ar

T∧as

[ef(as) − ef(as)βeka][er(Tmax−a) − 1]da}

By the definition of P (−r), P (k − r), P (k), Q(−r), Q(k − r), and Q(k), it becomes

II = ef(as){−erTmax

r
[Q(−r)−P (−r)]−[λ(ar)−λ(as)]−βerTmax

k − r
[Q(k−r)−P (k−r)]+

β

k
[Q(k)−P (k)]}

For the Third term,

III =
1

w
[ET{

∫ T

T∧ar

[−c(a)][er(Tmax−a) − 1]da}] = −ef(as)βET{
∫ T

T∧ar

eka[er(Tmax−a) − 1]da}

Thus

III = −ef(as)β{erTmax

k − r
[g(k − r)−Q(k − r)]− 1

k
[g(k)−Q(k − r)]} (35)

Finally,
φ(r, e0, σ0) = ef(as) · ϕ(r, e0, σ0) (36)

where

ϕ(r, e0, σ0) =
r − k

kr

(Q(−r)− P (−r))(g(k)− 1)

g(k − r)− 1
− λ(ar) + λ(as)
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C Analytical results

The steady interest rate must satisfy equations

f ′(as)[P (−r)−Q(−r)] +
dP (−r)

das

= 0 (37)

and
r − k

kr

(Q(−r)− P (−r))(g(k)− 1)

g(k − r)− 1
=

λ(ar)− λ(as)

1− α
(38)

In the following part, we first want to show that the steady interest rate is not unique if
it exists in the simplest case. Then we study the response of the steady interest rate to a
change in the life expectancy and the variance of death age respectively.

In the simplest case, as = 0, ar = ∞, γ = 1 and T is normally distributed for r ∈ [θ,∞).
The equation (20) can be written as

−θ

g(−θ)− 1
· g(−r)− 1

−r
· g(r − θ)− 1

r − θ
=

e0

1− α
(39)

Note that g(r−θ)−1
r−θ

→ e0 as r → θ. Therefore, the left hand side of equation (39) is e0.
Since α < 1, we have LHS < RHS.

Moreover, let r∗1 be the value {r : g(−r) − 1 = 0}. Then, in the range r ∈ (θ, r∗1),
−θ

g(−θ)−1
> 0, g(−r)−1

−r
> 0 and g(r−θ)−1

r−θ
> 0. Since LHS = 0 < RHS when r = r∗1. It is clear

that there will be at least two steady interest rate if there exists a steady interest rate in the
range (θ, r∗1).

In our calibration, we always choose the steady interest rate to be the one which is greater
than θ with the smallest value.

Now we study the response of the steady interest rate to a change in the life expectancy
when the variance of death age is fixed. Define

G(r, e0, v0) =
r − k

kr

(g(k)− 1)(g(−r)− 1)

g(k − r)− 1
− e0

1− α

For the steady interest rate, it is always true that G(r, e0, v0) = 0. For the reasonable range
of parameters, for example, e0 ∈ (64, 94), v0 ∈ (140, 900). We find that ∂G(r, e0, v0)/∂r > 0.
Similarly,

∂G

∂e0

= − 1

1− α
+

r − k

kr

[−rg(−r)(g(k)− 1) + kg(k)(g(−r)− 1)](g(k − r)− 1)− (g(−r)− 1)(g(k)− 1)(k − r)g(k − r)

(g(k − r)− 1)2

In the same range, ∂G(r, e0, v0/∂e0 > 0. Therefore,

dr

de0

= −
∂G
∂e0

∂G
∂r

< 0
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The response of the steady interest rate to a change in the variance of death age when
the life expectancy is fixed can be studied similarly. We find that

dr

dv0

= −
∂G
∂v0

∂G
∂r

< 0
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