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OVERVIEW OF THE TOPIC 

Large amounts of epidemiologic and demographic data have been collected to link health 
changes over time. For example, the original Framingham study of a cohort of 5,204 persons (aged 29 
to 62) began in 1949-1950, with follow-up exams done every two years. The initial purpose of the 
study was to determine the relation, over time, of disease risk, especially of cardio vascular disease, to 
several potential (in 1950) risk factors (such as serum cholesterol, blood pressure, smoking, body mass 
index (BMI), etc). In addition, longitudinal risk factor studies of long standing have been conducted in 
community studies (in Charleston, South Carolina and Honolulu, Hawaii), in national studies (the 
MRFIT program and the CHS and ARIC studies), and in international studies (the seven-country study 
[1] among others). In Framingham new studies were initiated (in 1972) on the offspring of the original 
cohort members. 

Despite this wealth of longitudinal data on the health dynamics of human populations, the 
information on state variable changes in those studies has not been systematically and fully exploited. 
As a consequence, some of the conclusions based on those studies proved either to be incorrect or to 
require serious qualification. For example, the linkage of total cholesterol to cardiovascular morbidity 
and overall health was found to be too crude. It was determined that at least three components of 
cholesterol needed to be identified. 

In addition there have been few attempts to link the various types of information in more 
comprehensive (multi- level) dynamic models of human physiology in natural human populations. 
Furthermore, in the models that have been considered a linear paradigm was usually employed. A 
linear paradigm is unlikely to be a satisfactory description of a well- integrated complex physiological 
system where the effects of some parameters of the systems are dependent on the values of others. 

We use the 46-year follow-up of the Framingham Heart Study to analyze state dynamics in 
models that go far beyond the standard linear dynamic formulation [2] to improve the inferences about 
the physiology and plasticity of human aging processes that can be made from longitudinal studies of 
human populations. In this presentation we concentrate on improving our modeling of state trajectories 
for individuals.  

 
DATA 

The Framingham Heart Study began with a cohort of 5,209 persons (2,336 males and 2,873 
females), aged 29 to 62, recruited in 1950. People were assessed biennially. Our database consists of 
up to 23 records for each person (i.e., 46 years of follow-up). For each wave of measurement, the 
biological measures we had available for each record were: gender, age, sex, diastolic blood pressure, 
systolic blood pressure, serum cholesterol, vital capacity index, hemoglobin (or hematocrit), cigarette 
consumption, body mass index, blood glucose, ventricular (heart) rate, and left ventricular 
hypertrophy.  

We used this longitudinal data to analyze the dynamics of state variables and determine how 
they relate to the health status of persons as it changed over 46 years, from ages 30-62 (at study start) 
to ages 76-108 (at our “end” of follow-up). The individual risk factors are: 

Age (x1). Statistically, age (number of years) is one of the most important risk factors 
describing physiological activity and reflecting the process of senescence; it is, however, not directly 
informative about specific biological mechanisms. We assume that age and calendar time are 



equivalent for making the coefficients of our model time-dependent. 
Pulse pressure (x2). Rather than dealing directly with systolic blood pressure, we consider the 

difference between diastolic and systolic blood pressures, which is called pulse pressure. Pulse 
pressure is less strongly correlated to diastolic blood pressure than systolic blood pressure. Its increase 
is a major risk factor for stroke and its decrease may reflect loss of heart pump capacity with age. 

Diastolic blood pressure (x3). Diastolic blood pressure has a tendency to increase with age. It 
increases the risk of stroke, atherogenesis, and renal damage. 

Body mass index (x4). Body mass index accounts for the health risk of obesity. Low BMI may 
be an indicator of caloric restriction and has been found (in literature) to be an indicator of enhanced 
longevity and to lower disease risks in animal models [3]. In humans, the relation of BMI to body mass 
is likely complex and multi-dimensional.  

Serum cholesterol (x5). Increased plasma, insulin, and obesity accelerate lipolysis, increasing 
circulating free fatty acids and triglycerides that cause serum cholesterol to increase until late middle 
age, after which it declines. The lipid components of cholesterol have conflicting functions (HDL vs. 
LDL), and their levels are controlled by hepatic metabolism (e.g., HMCOGA enzyme). Thus we must, 
in analyzing the 46 year follow-up, concentrate on examining the temporal change in the covariances 
of cholesterol with other risk factors. 

Blood glucose (x6). Elevated blood glucose is indicative of diabetes, which increases the risk of 
death because of multiple diseases. Elevated blood glucose is an indicator of insulin resistance and can 
cause damage to many different tissue types (e.g., retina and kidneys). 

Hematocrit (x7). Hematocrit affects hemostatic and rheological factors in thrombosis, elevates 
cholesterol, and might be related to the inhibition of the relaxation of coronary artery endothelium by 
stimulating free radical production.  

Vital capacity index (x8). The vital capacity index is calculated as 10 ×  vital capacity in 
deciliters / height2. This measure of pulmonary capacity is believed to be one of the biomarker's most 
directly related to senescence [4] possibly because of the direct exposure of pulmonary tissue to the 
environment. 

Smoking (x9). Smoking risk is exacerbated by the smoking rate, which is described as the mean 
number of cigarettes consumed per day. Similar to elevated blood glucose and hematocrit, smoking 
accelerates multiple age-related processes. In females it may also affect the fertility of both the mother 
and the female fetus by reducing the number of viable oocytes. 

Left Ventricular Hypertrophy (x10) (LVH). LVH prevalence is a consequence of hypertension, 
loss of cardiac catecholamine receptors, and obesity. With appropriate blood pressure (Ace inhibitor), 
hormonal control, and physical activity, LVH may now be reversible. 

Pulse rate (x11). Pulse rate (beats/minute) reflects physical fitness. Resting heart rate predicts 
cancer risk independent of physical activity.  

These variables define a J=11 dimensional risk factor space, which is conditioned on male and 
female status. 
 
THEORETICAL BACKGROUND AND ANTICIPATED RESULTS 

We constructed a stochastic process from the J variables measured on I individuals up to N 
times. The model to be constructed must describe the movement of a person i (i=1,2,…I) in a J 
dimensional state space. To construct the model we use the random walk specification [5] which leads 
to the linear dynamic equations for J variables.  

Such a model describes how changes in each of the J state variables are related to linear 
superposition on their prior values. Linear models are widely used because of their simplicity and ease 
of interpretation. However, they are often too simple to correctly predict an organism’s future health 
status because they may not capture essential features of underlying, linked processes. Due to 
interactions among the components of a system, realistic multi-parametric biological, social, and other 



complex systems are often nonlinear. Any model that is not linear with respect to system variables 
(i.e., when the superposition principle is violated) is considered to be nonlinear in variables (versus 
parameters), or simply nonlinear. Dynamics in such systems can also be affected by unobserved 
processes reflecting nonlinear interactions and/or correlation among the system components so that 
standard linear models cannot fully describe data originated from these systems. Nonlinear time series 
analysis has recently gained attention [6]. For example, it was recently shown that the Framingham 
data do not support a linear paradigm [7]. In this case, nonlinear analysis is essential. However, 
employing nonlinear models one can face a problem which might be related with specific features 
originating from nonlinear interactions. This can require application of special methods of nonlinear 
dynamics to the analysis of state dynamics for individuals. In this presentation we specifically deal 
with such kind of problems. 

At the beginning, we focus on the study of the simplest type of nonlinear model, when 
nonlinear terms are assumed to be proportional to the product of two risk factors. This is in addition to 
the assumption of the linear superposition of all risk factors on future health. Hence, we assume that 
each risk factor can “interfere” with each other inducing additional changes (positive or negative, 
depending on goodness of fit and the substantial importance of their interaction) in future health. Then, 
we extend our model assuming that interference of three and four  variables can be also important. 
Respectively, this can be represented by scalar product of three and four variables. 

We expect that considerable additional information on human aging processes can be extracted 
if one assesses nonlinear effects. However, such models can give rise to surprising behavior as a 
consequence of their intrinsic nonlinear nature. Hence, we elaborate a way how standard statistical 
methods used to describe the age dependence of health status in traditional linear models can be 
enhanced to determine the best nonlinear model. 
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