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1 Introduction

Log-linear models are used in demography and epidemiology to model rates
cross-classified by explanatory factors. A rate is defined as the ratio of the
number of events of interest to the exposure. For example, for mortality
rates, the exposure is total person-years at risk. The rates are not modelled
directly, but a table of counts of events of interest and a table of exposures are
required. Often, the true exposure is unknown and an estimate of exposure
is used. The problem we study in this paper is the effects of misspecification
of the exposures on inferences drawn from a log-linear model for rates. Our
literature review suggests that the effects of this type of misspecification
have not been investigated. In particular, we investigate how this type of
rates model misspecification affects parameter estimates, estimated standard
errors, confidence intervals, test statistics, etc.
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To fix ideas, we first consider a simple example of comparing two rates, taken
from Agresti (2002, Problem 9.17). We wish to compare the motor vehicle
accident rate of men and women aged 65 to 84, who had a valid driver’s
license during the study period 1984–1988. The women had 175 accidents
and the men had 320. While Agresti provides the person-years of observation,
we are interested in what inferences can be drawn without knowing the true
exposures or with only partial information, e.g., the ratio of exposures. We
then consider 2-way and 3-way tables. We discuss the implications of our
results to a 2-way table of lung cancer cases by age in four Danish cities,
previously analyzed by Andersen (1977). For a 3-way table, we also consider
the situation where one dimension of the table is time, but the exposures
are only known at one time point. We discuss the implications of our results
for this situation with a 3-way table of fatal fire casualties in the UK for the
years 1969 to 1973 cross-classified by age and sex. Here the population at
risk for the various age categories for each sex is known only for the Census
year 1971.

2 Log-linear Models for Rates

Following the notation of McDonald, Smith and Forster (1999), let Y = {Yi :
i = 1, . . . , n} be a vector of independent counts of events of interest, e.g.,
deaths, with Yi ∼ Poisson(λi ei), where λi is the rate for population i and the
ei are fixed (non-random), known constants termed rate multipliers. Then
the log-linear model for rates

log(λi) = xT
i β i = 1, . . . , n,

can be written as the log-linear model for expected counts as

logE(Yi) = log(λi ei) = xT
i β + log ei i = 1, . . . , n,

where log ei is a known ‘offset’, β = (β1, . . . , βn)
T is a vector of parameters

corresponding to the vector of covariates xT
i = (xi1, . . . , xin), and T denotes

the transpose. An offset is a term in the linear predictor with coefficient set
equal to one, rather than estimated.
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3 One-way Tables

We first consider the simple example of comparing two rates. We consider
testing that the two rates are equal using the Wald test, a conditional test,
the score test and the likelihood ratio test. Note that, in general, inferences
based on these alternative procedures may yield different results.

Here the data are often presented in two one-way tables, the first containing
the counts of the events of interest and the second the exposures or in the
following more condensed format with the observed rates.

population
1 2

events y1 y2

exposure e1 e2
observed rate y1/e1 y2/e2

In this situation, the log-linear rates model has the form logE(Y1) = β1 +
log e1 and logE(Y2) = β1 + β2 + log e2, where xT

1 = (1, 0) and xT
2 = (1, 1)

and the hypothesis of equal rates is H0 : β2 = 0.

3.1 Wald Test

It is straightforward to show that the maximum likelihood estimates (mles)

are β̂1 = log(y1/e1) and β̂2 = log(y2/e2)−log(y1/e1) = log(y2 /e2

y1/e1
) = log(y2 e1

y1 e2
).

Note that exp(β̂1) = y1/e1, i.e., the observed rate in population 1 and

exp(β̂2) = y2/e2

y1/e1
, i.e., the observed rate ratio (population 2 versus population

1). It is also straightforward to show that the estimated asymptotic standard

error of β̂2 is
√

1/y1 + 1/y2. Hence, the Wald test statistic for H0 : β2 = 0 is

log(y2 e1

y1 e2
)

√
1
y1

+ 1
y2

and a 95% confidence interval for β2 is

log(
y2 e1
y1 e2

) ± 1.96

√
1

y1
+

1

y2
.

3



Note that only the ratio of exposures e1/e2 is required to correctly calculate
these statistics. Therefore, the length of the confidence interval does not
depend at all on the individual exposures and the location only on their
ratio! The effect of not knowing the exposures is only to shift the location
of the interval, if e1/e2 6= 1.

If the exposures are unknown then, for a given test size, 5% say, we can
calculate a range of values for the ratio of exposures for which H0 will be
accepted:

y1

y2
exp(−1.96

√
1

y1
+

1

y2
) ≤

e1
e2

≤
y1

y2
exp(1.96

√
1

y1
+

1

y2
).

For the Agresti (2002, Problem 9.18) example, with y1 = 175 and y2 = 320,
this gives

0.416 ≤
e1
e2

≤ 0.599.

Hence, provided that e1, the person years of observation for women, is at
least 59.9% of e2, the person years of observation for men, we would reject
H0 and conclude that the rate for men is greater than that for women. On
the other hand, if e1 is less than 41.6% of e2 we would conclude that the
rate is greater for women. The exposure for women was 17.3 thousand years
of observation and for men 21.4 thousand years, so the ratio of exposures is
e1/e2 = 17, 300/21, 400 = .808, so that the person years of observation for
women was 80.8% of that of men.

3.2 Conditional Test

Alternatively, a conditional test may be used to test the equality of rate pa-
rameters, i.e.,H0 : λ1 = λ2. Here Y1 ∼ Poisson(λ1 e1) and Y2 ∼ Poisson(λ2 e2)
and the conditioning is on the total number of events, Y1 + Y2. The condi-
tional distribution of Y1, given Y1 + Y2 = t is binomial:

Y1 | Y1 + Y2 = t ∼ binomial (t,
λ1 e1

λ1 e1 + λ2 e2
)

where the probability of “success” depends only on the fraction of total expo-
sure in population 1, i.e., e1/(e1+e2), when the rates are equal. Equivalently,
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the conditional distribution only depends on the ratio of exposures, when the
rates are equal:

Y1 | Y1 + Y2 = t ∼ binomial (t,
1

1 + (λ2/λ1) (e2/e1)
).

3.3 Score Test

Alternatively, a score test may be used to test H0 : β2 = 0. The score
(gradient of the log likelihood at the null value of the parameter) is

U = Y1 − (Y1 + Y2) (
e2

e1 + e2
)

and the score variance (minus the curvature of the log likelihood also at the
null value) is

V = (Y1 + Y2) (
e2

e1 + e2
) (

e1
e1 + e2

).

The score test statistic is U2/V , which has asymptotically a χ2
1 distribu-

tion under H0 : β2 = 0. For the score test, inference about the rate ratio
only depends on the ratio of exposures or equivalently, the fraction of total
exposure.

3.4 Likelihood Ratio Test

Note also that the conditional likelihood and profile likelihood of β2 only
depends on the ratio of exposures or equivalently, the fraction of total expo-
sure (Clayton & Hills, 1993). Here the conditioning is on the total number
of events and the conditional log likelihood equals the profile log likelihood.
These log likelihoods, up to a constant of proportionality, are

y2 log(θ
e2
e1

) + (y1 + y2) log(1 + θ
e2
e1

),

where θ = exp(β2) = λ2/λ1 is the rate ratio. Hence, the likelihood ratio test
statistic for H0 again only depends on the ratio of exposures (or equivalently,
the fraction of total exposure) since θ = 1 under H0 and θ̂ = y2e1/y1e2 under
the unconstrained alternative hypothesis.
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4 Two-way Tables

Now consider a random two-way table, Y = {Yij} of independent counts of
events of interest, with Yij ∼ Poisson(λij eij), where λij is the rate and eij

are known exposures for the ij cell of the R × C table, where i = 1, . . . , R
and j = 1, . . . , C. The multiplicative rates model (no interaction model)
corresponds to the hypothesis that λij = c× ai × bj . As

λij = c× ai × bj = c× a′i × b′j

for a′i = k×ai and b′j = bj/k, we require parameter constraints for identifiabil-
ity. Set a1 = 1 and b1 = 1 which implies that λ11 = c and λij = λ11 × ai × bj
and thus c is interpreted as the rate in the (1,1) cell, which is called the
baseline or reference cell. These parameter constraints are termed baseline
or corner-point constraints. The multiplicative rates model (no interaction
model) corresponds to all cross-product ratios of rates equalling one. For
example, for a 2 × 2 table, λ11λ22/λ12λ21 = 1.

Commonly, inference about a two-way table of counts is made conditional on
either the table total, one or both of the marginal totals, using respectively,
the multinomial, product-multinomial and hypergeometric distributions. As
is well-known, for a two-way table of multinomially distributed counts yij ,
the additive log-linear model without offset corresponds to the hypothesis
of independence. In this situation, the mles of the cell means mij can be
expressed in closed form

m̂ij = yi+ y+j/y++,

where + denotes summation over the corresponding subscript. Also, closed
form mles of the row and column main effect parameters can be written as log-
arithms of the ratios of the row and column marginal totals respectively. The
exact expression depends on the parameterization of the log-linear model. It
is little known that for the additive log-linear rates model where the expo-
sures have a multiplicative form, i.e., eij = ei+ e+j/e++, closed form mles of
the parameters exist (Hoem, 1995). Closed form mles of the cell means mij

and cell rates λij are
m̂ij = yi+ y+j/y++

and
λ̂ij = (yi+ y+j/y++)/(ei+ e+j/e++)
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(see the Appendix for further details). Closed form mles of the row and
column main effect parameters are logarithms of the ratios of the row and
column marginal rates respectively. Again, the exact expression depends on
the parameterization of the log-linear model. The asymptotic standard error
of the row and column main effects for baseline parameter constraints is the
square root of the reciprocals of the marginal totals of the event counts.

4.1 2 × 2 Table

Now consider a 2 × 2 table and the saturated log-linear model with offset
log eij ,

logE(Yij) = β + β1
i + β2

j + β12
ij + log eij i = 1, 2; j = 1, 2, (1)

where the {β1
i } are the main effects for factor 1, the {β2

i } are the main
effects for factor 2 and the {β12

ij } are the two-factor effects or interactions
between factors 1 and 2. For identifiability, we set β1

1 = β2
1 = β12

i1 = β12
1j = 0.

The sufficient statistics are y++ for β, yi+ for β1
i and y+j for β2

j . The null
hypothesis of H0 : β12

ij = 0 corresponds to the multiplicative rates model (no
interaction model). When the exposures also have a multiplicative form, the
mles under H0 : β12

ij = 0 are

β̂ = log[(y1+ y+1/y++)/(e1+ e+1/e++)],

β̂1
2 = log[ y2+/e2+] − log[ y1+/e1+] = log[ (y2+/e2+)/( y1+/e1+)]

and

β̂2
2 = log[ y+2/e+2] − log[ y+1/e+1] = log[ (y+2/e+2)/( y+1/e+1)]

The estimated asymptotic standard error of β̂1
2 is

√
1/y1+ + 1/y2+ and of

estimated asymptotic standard error of β̂2
2 is

√
1/y+1 + 1/y+2. It is important

to note that all these closed form parameter estimates only depend on the
marginal counts of events and marginal exposures, i.e., the marginal rates,
and the mles of the main effects depend only on the ratios of the marginal
exposures. Also, the estimated asymptotic standard errors only depend on
the marginal counts of events and not the exposures.
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4.2 Effects of Omitting a Covariate in Poisson Models

Note that for a R × C table and more generally, the estimates of the effects
of interest and of their standard errors are unaffected when a covariate is re-
moved from the Poisson multiplicative rates model when the exposures have
a multiplicative form, e.g., the estimate of the effect of factor 1 is unaffected
by whether factor 2 is in the model or not (and vice versa). Petersen and
Deddens (2000) proved this result for the case of balanced Poisson distributed
data if no offset variable is included. Proceeding to analyze the effect of factor
1 without taking into account the presence of factor 2 is model misspecifica-
tion since factor 2 is assumed to influence the rate. Here we have harmless
model misspecification, see Hoem (1995).

There is a close analogy with analysis of variance with the same number of
observations in each cell of the table (balanced data). It is well known that
for balanced data the test sum of squares and parameter estimates are based
on an orthogonal decomposition of the data vector. In this situation, we
do not need to adjust for factor 1 in order to estimate the effect of factor 2
and to calculate the test sum of squares that factor 1 has no effect. For the
unbalanced case, where we have unequal numbers of observations in the cells
of the table, we must usually adjust for the effect of factor 1 in order to assess
the effect of factor 2 and to calculate the test sum of squares to test that
factor 2 has no effect. There is one exception to this, the case of proportional
numbers of observations, where the cell numbers in any two rows (or columns)
are proportional. In this case, the decomposition of the data vector is again
orthogonal (Scheffe, 1959) as the multiplicative cell counts are equivalent to
independent factors 1 and 2. In the analysis of rates, multiplicative exposures
have a role quite analogous to the situation of multiplicative cell counts in
ANOVA and in this situation, we have harmless model misspecification.

Petersen and Deddens (2000) note that in linear models, when a covariate
is omitted from the model, that the sum of squares for that effect is pooled
with the error. If the F-statistic for the omitted effect is greater than one,
the results in a larger standard error for the remaining parameter estimates.
Hence, in the linear model case, if the data are balanced, the estimated
parameter estimate will be the same as that in the full model, but the stan-
dard error will be changed. In contrast, the estimates of effects of interest
and their standard errors are unaffected when a covariate is removed from a
Poisson multiplicative rates model when the exposures have a multiplicative
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form. One obvious use of this result is the situation when only the marginal
exposures are known, but the analyst is willing to assume a multiplicative
form for the exposures. In this situation, the actual cell exposures are not
needed for the analysis.

4.3 Wald Test

Testing goodness of fit of the multiplicative rates model corresponds to test-
ing H0 : β12

ij = 0 for model (1) or equivalently λ11λij/λ1jλi1 = 1 for all ij. It
is straightforward to show that the mle of β12

ij is

β̂12
ij = log[

(y11/e11)(yij/eij)

(y1j/eij)(yi1/ei1)
] = log[

y11 yij

y1j yi1
] − log[

e11 eij

eij ei1
].

Note that this estimate is the log of the crossproduct ratio of the observed
rates or equivalently, the log of the crossproduct ratio of the observed counts
minus the log of the crossproduct ratio of the exposures. Note also that

exp(β̂12
ij ) is the crossproduct ratio of the observed rates. It is also straight-

forward to show that the estimated asymptotic standard error of β̂12
ij is√

1/y11 + 1/yij + 1/y1j + 1/yi1. Hence, the Wald test statistic for H0 : β12
ij =

0 is

log[y11 yij

y1j yi1
] − log[e11 eij

eij ei1
]

√
1/y11 + 1/yij + 1/y1j + 1/yi1

and a 95% confidence interval for β12
ij is

(log[
y11 yij

y1j yi1
] − log[

e11 eij

eij ei1
]) ± 1.96

√
1/y11 + 1/yij + 1/y1j + 1/yi1.

Note that only the crossproduct ratio of exposures is required to correctly
calculate these statistics. Therefore, the length of the confidence interval
does not depend at all on the individual exposures, and the location only
on their crossproduct ratio! If the exposures have a multiplicative form, the
log crossproduct ratio of the exposures term in the Wald statistic is zero
and hence, the Wald test does not depend on the exposures! Hence, in this
case, no further information on the exposures is required. If the exposures
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have a multiplicative form, there is no effect of exposure misspecification
on the Wald test. If the exposures do not have a multiplicative form, then
the length of the Wald-test based confidence interval remains unchanged,
but the location depends on the log crossproduct ratio of the cell exposures.
The effect of not knowing the exposures is only to shift the location of the
confidence interval. Similarly to the one-way table case, if the exposures are
unknown then, for a given test size, 5% say, we can calculate a range of values
for the crossproduct ratio of exposures for which H0 will be accepted.

4.4 Conditional Test

The exact conditional distribution for testing goodness of fit of this model
is given by (2) and is a multivariate noncentral hypergeometric distribution
(McCullagh and Nelder, 1989, Section 7.3.4), with noncentrality parameter
defined by the offset. For a 2×2 table, this is a univariate distribution which
can be written as

f(y11 | Y1+ = y1+, Y+1 = y+1, Y++ = y++)

∝
(λ11 e11)

y
11(λ12 e12)

y
12(λ21 e21)

y
21(λ22 e22)

y
22

y11! y12! y21! y22!

=
(λ11 e11)

y
11(λ12 e12)

(y1+−y11)(λ21 e21)
(y+1−y11)(λ22 e22)

(y++−y1+−y+1+y11)

y11!(y1+ − y11)!(y+1 − y11)!(y++ − y1+ − y+1 + y11)!

∝
(ψ φ)y

11

y11!(y1+ − y11)!(y+1 − y11)!(y++ − y1+ − y+1 + y11)!
. (2)

with noncentrality parameter ψ φ, where ψ = λ11λ22/λ12λ21 and φ = e11e22/e12e21,
the cross-product ratio of the rates and exposures respectively; see also Gart
(1975, 1978).

For φ = 1, the conditional mle of ψ is the value of ψ, say ψ̂, which makes
the conditional expectation of y11 exactly equal to its observed value, i.e.,

y11 = E(Y11 | y1+, y+1, y++, ψ̂).

This equation is a polynomial in ψ. Exact 1−α conditional limits for ψ may
also be obtained by using this conditional distribution, say (ψL, ψU). For
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φ = e11e22/e12e21 6= 1, the conditional mle is

ψ̂

e11e22/e12e21

and exact conditional limits for ψ are

(
ψL

e11e22/e12e21
,

ψU

e11e22/e12e21
)

(Gart, 1978). Again, the conditional mle and conditional confidence lim-
its only depend on the crossproduct ratio of the exposures. In contrast to
the Wald-based confidence interval where the length did not depend on the
crossproduct ratio, the conditional limits are scaled by the crossproduct ratio
of the exposures.

4.5 Likelihood Ratio Test

The likelihood ratio test of goodness of fit of the multiplicative rates model
is

L2 = 2
∑

ij

yij log(yij/m̂ij)

As shown in the Appendix, m̂ij only depends on the crossproduct ratio of
the exposures. Therefore, when the exposures have a multiplicative form, all
these crossproduct ratios are one and m̂ij = yi+ y+j/y++. In this case, the
likelihood ratio test of the goodness of fit of the multiplicative rates model is

L2 = 2
∑

ij

yij log(yij/(yi+ y+j/y++)).

Note also that in this case, the Pearson goodness of fit test statistic as well
as the Pearson and deviance residuals do not depend on the exposures.

4.6 Measurement Error

The cell exposures may be subject to measurement error, e.g., the cell expo-
sures may be underestimated. For example, suppose we wish to compare the
motor vehicle accident rates of men and women aged 65-74 and 75-84, who
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had a valid driver’s license during the study period 1984–1988. The data in
the form of 2 × 2 tables are a table of the number of accidents by age and
sex and the corresponding table of exposures by age and sex. If the (1,1)
cell exposure is underestimated by 28%, the (1,2) cell exposure by 20%, the
(2,1) cell exposure by 10% and the (2,2) cell exposure by 0%, then

(.72 e11)(1.0 e22)/(.8 e12)(.9 e21) = e11 e22/e12 e21.

Here, the crossproduct ratio of exposures measured with error equals the
crossproduct ratio of true exposures, so inferences are unaffected. Again,
proportions are important, not absolute values.

4.7 Danish Lung Cancer Data

In the early 1970s, a study on the potential health effects of air pollution
in the Danish city of Fredericia, which was dominated by a large fertilizer
plant, was carried out by comparing the number of lung cancer cases during
1968-1971, by age in Fredericia with three other cities close to Fredericia
and of about the same size (Andersen, 1990). These counts are presented
in Table 1. These cities are denoted city 1 (Fredericia), city 2, city 3 and
city 4. Andersen (1977) presents the bivariate distribution of the number of
inhabitants by city and age (Table 2), while Andersen (1990) only presents
the marginal number of inhabitants for each age group and for each city!

The null hypothesis of interest is the rate of getting lung cancer is the same
in all four cities for each age group. If we assume that the age distribution
is the same in all four cities,

eij/e+j = ei+/e++

we have a multiplicative form for the exposures. A likelihood ratio test
of the hypothesis of homogeneous age distributions for each city yields a
L2 = 134.83 on 15 degrees of freedom, so that the hypothesis of homogeneity
is rejected. This is not too surprising given the large “sample size” of 26 408.
Table 3 presents the percentage age distribution for each city. These age
distributions are similar. Table 6 presents the adjusted residuals for the
model of homogeneity. Adjusted residuals have asymptotically a standard
normal distribution when the model is true. The largest adjusted residual
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in absolute value, 8.96, corresponds to the (1,1) cell, i.e., age group 40-54
in city 1, while the fourth smallest adjusted residual in absolute value, 0.53,
corresponds to the (6,4) cell, i.e., age group 75+ in city 4. The crossproduct
ratios of exposures relative to the (1,1) cell and relative to the (6,4) cell are
presented in Tables 4 and 5 respectably. How far these ratios are from the
null value of one, which corresponds to homogeneity, is one measure of how
similar these age distributions are. Using the (1,1) cell as the baseline cell is
probably the worst case as this cell has the largest adjusted residual, while
using the (6,4) cell as the baseline cell is almost the best case as it has the
fourth smallest adjusted residual. Hence, in Table 6 these ratios look closer
to 1 with 9 ratios less than 1 and 6 ratios greater than 1, rather than in Table
5 with all 15 ratios greater than 1.

Table 1: Number of lung cancer cases during 1968-71 for four Danish cities
by age.

age city 1 city 2 city 3 city 4 total
40-54 11 13 4 5 33
55-59 11 6 8 7 32
60-64 11 15 7 10 43
65-69 10 10 11 14 45
70-74 11 12 9 8 40
75+ 10 2 12 7 31
total 64 58 51 51 224

Table 2: Number of inhabitants for four Danish cities by age.

age city 1 city 2 city 3 city 4 total
40-54 3 059 2 879 3 142 2 520 11 600
55-59 800 1 083 1 050 878 3 811
60-64 710 923 895 839 3 367
65-69 581 834 702 631 2 748
70-74 509 634 535 539 2 217
75+ 605 782 659 619 2 665
total 6 264 7 135 6 983 6 026 26 408
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Table 3: Percentage age distributions for four Danish cities.

age city 1 city 2 city 3 city 4 total
40-54 48.33 40.35 44.99 41.82 43.93
55-59 12.77 15.18 15.04 14.57 14.43
60-64 11.33 12.94 12.82 13.92 12.75
65-69 9.28 11.69 10.05 10.47 10.41
70-74 8.13 8.89 7.66 8.94 8.40
75+ 9.66 10.96 9.44 10.27 10.09

Table 4: Adjusted residuals for model of homogeneity

age city 1 city 2 city 3 city 4
40-54 8.96 -7.12 2.10 -3.75
55-59 -4.28 2.10 1.68 0.35
60-64 -3.85 0.55 0.20 3.11
65-69 -3.36 4.15 -1.13 0.19
70-74 -0.88 1.75 -2.58 1.75
75+ -1.30 2.85 -2.12 0.53

Table 5: Crossproduct ratios of exposures relative to the (1,1) cell

age city 1 city 2 city 3 city 4
40-54
55-59 1.438 1.278 1.332
60-64 1.381 1.227 1.434
65-69 1.525 1.176 1.318
70-74 1.323 1.023 1.275
75+ 1.373 1.060 1.242

Table 6: Crossproduct ratios of exposures relative to the (6,4) cell

age city 1 city 2 city 3 city 4
40-54 1.242 0.904 1.171
55-59 0.932 0.976 1.123
60-64 0.866 0.871 1.002
65-69 0.942 1.046 1.045
70-74 0.966 0.931 0.932
75+
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Assuming the age distributions are the same for the cities, we can test the
multiplicative rates (no interaction) model by using the likelihood ratio test
on the lung cancer counts (ignoring the exposures). The L2 = 20.67 on 15
degrees of freedom with p-value = 0.148, so the hypothesis of multiplicative
rates is not rejected. Andersen (1990) notes that the tests of city effects
and age effects can be carried out using the marginal distributions of the
lung cancer cases by city and by age respectively. In the contingency table
literature, this is called collapsability, i.e., when a test can be carried out
using lower dimensional marginals. Hence, the test of the hypothesis that
the rate of lung cancer is the same in the four cities can be carried out
using the marginal distribution of lung cancer cases by city and the marginal
distribution of inhabitants by city. The fraction of total exposure in each
city specifies the multinomial probabilities used for the likelihood ratio test
in the one-way table of lung cancer cases by city. Here L2 = 3.5 on 3 degrees
of freedom with p-value = 0.32, so the hypothesis of equal expected lung
cancer rates in the four cities is not rejected at the 5% level.

Note that one, perhaps surprising, implication of this collapsability result,
is that if a multiplicative exposure structure holds, then model screening for
an additive log-linear rates model for an arbitrary number of factors only
involved tests in one-way tables, one for each factor!

4.8 Multiplicative Exposures

Multiplicative exposure structures may be common. If suicides were clas-
sified by month of suicide and sex of suicide, then exposure is known for
one margin of the table, namely, the number of days in each month and
this would be same for each sex, so that a multiplicative exposure structure
holds. If one factor is time (year), then the population at risk over time typ-
ically may change slowly, so that a multiplicative exposure structure holds
approximately. This is exemplified by our next example of a three-way table.
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5 Three-way Tables

Table 7 presents the number of fatal fire casualties in the UK during 1969-73
by sex and age. Table 8 presents the population at risk by sex and age for
1971. This information is available for census year 1971, but not for the
other years. One way of dealing with the missing population data for the
other years is to assume that the population at risk by age and sex for the
other years is the same as the 1971 figures. Alternatively, the population at
risk over time may change slowly, so that a multiplicative exposure structure
holds approximately. If the total population were growing at 1% per year for
each age and sex category, then a type of multiplicative exposure structure
would hold over time, namely, the exposures as a function of i (time), j
(age) and k (sex) would factorize as eijk = ei ejk. By thinking of the joint
age-sex factor as a new factor, then we may think of the three-way table as
a restructured two-way table (time factor by joint age-sex factor) and our
results for two-way tables apply. For example, one could study effects of time
(year) using the time marginal distribution.

Table 7: Number of fatal fire casualties in the UK during 1969-73 by sex
and age.

males
age 1969 1970 1971 1972 1973
<15 105 96 85 104 105

15-44 126 115 110 162 161
45-64 75 92 84 107 106
65-74 48 62 58 60 76
75+ 59 76 78 74 75

females
age 1969 1970 1971 1972 1973
<15 83 70 71 90 79

15-44 43 44 68 59 74
45-64 77 67 66 94 99
65-74 91 55 69 92 76
75+ 142 145 116 191 167
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Table 8: UK population in 1971 (millions) by sex and age.

age males females
<15 6.9 6.5

15-44 10.9 10.6
45-64 6.5 6.8
65-74 2.0 2.9
75+ 0.8 1.8
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Appendix

Consider the multiplicative rates model for a 2 × 2 table. The fitted rates
are the positive solutions to the equation:

λ̂11 λ̂22

λ̂12 λ̂21

= 1

or equivalently
m̂11 m̂22

m̂12 m̂21

=
e11 e22
e12 e21

subject to the constraints that the fitted counts add up to the observed
marginal counts, i.e., m̂11 + m̂12 = y1+, m̂21 + m̂22 = y2+, m̂11 + m̂21 = y+1

and m̂12 + m̂22 = y+2. With these constraints, the equation to be solved is

m̂11 m̂22

m̂12 m̂21

=
(y11 + δ) (y22 + δ)

(y12 − δ) (y21 − δ)
=
e11 e22
e12 e21

where m̂11 = y11 + δ, m̂12 = y12 − δ, m̂21 = y21 − δ and m̂22 = y22 + δ. This
is a quadratic in δ and has a “closed form” solution. Note that the solution
only depends on the crossproduct ratio of the exposures.

When the exposures have a multiplicative form,

λ̂ij = (yi+ y+j/y++)/(ei+ e+j/e++)

satisfies
λ̂11 λ̂22

λ̂12 λ̂21

= 1

as

[(y1+ y+1/y++)/(e1+ e+1/e++)][ (y2+ y+2/y++)/(e2+ e+2/e++)]

[(y1+ y+2/y++)/(e1+ e+2/e++)] [(y2+ y+1/y++)/(e2+ e+1/e++)]
= 1

and

m̂ij = (yi+ y+j/y++)

satisfies the constraint that the fitted counts add up to the observed marginal
counts.
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Now consider the multiplicative rates model for a R × C table, the fitted
rates are the positive solutions to the (R− 1)(C − 1) equations:

λ̂11 λ̂ij

λ̂1j λ̂i1

= 1 for i = 2, . . . , R; j = 2, . . . , C

or equivalently

m̂11 m̂ij

m̂1j m̂i1
=
e11 eij

e1j ei1
for i = 2, . . . , R; j = 2, . . . , C

subject to the constraints that the fitted counts add up to the observed
marginal counts. When the exposures have a multiplicative form,

λ̂ij = (yi+ y+j/y++)/(ei+ e+j/e++)

satisfies
λ̂11 λ̂ij

λ̂1j λ̂i1

= 1

as

[(y1+ y+1/y++)/(e1+ e+1/e++)][ (yi+ y+j/y++)/(ei+ e+j/e++)]

[(y1+ y+j/y++)/(e1+ e+j/e++)] [(yi+ y+1/y++)/(ei+ e+1/e++)]
= 1

and

m̂ij = (yi+ y+j/y++)

satisfies the constraint that the fitted counts add up to the observed marginal
counts. Hence, closed form mles exist for the multiplicative rates model when
the exposures have a multiplicative form.
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