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Abstract 

 

Yang and Land (2003) and Yang (2004) developed a mixed (fixed-random) effects model 

for the age-period-cohort (APC) analysis of micro datasets in the form of a series of 

repeated cross-section sample surveys that are increasingly available to demographers.  

To estimate the mixed effects APC models, Yang and Land applied the statistical 

methodology of hierarchical regression models by treating cohort and period effects as 

random.  An alternative approach to model specification could be based on a purely 

fixed- cohort-and-period-effects regression model, which does not require large numbers 

of cohorts and/or periods for reliable statistical estimation and the assumption that the 

period and cohort effects are independent of individual-level regressors.  We examine 

these assumptions and compare the fixed- versus random-effects model specifications for 

APC analysis. We continue to use the data on verbal test scores from 15 cross-sections of 

the General Social Survey, 1974-2000, for substantive illustrations.  Strengths and 

weaknesses are identified for both the random- and fixed-effects formulations.  However, 

under each of the two data conditions studied – one with a moderate number of cohorts 

and time periods and another with a small number of cohorts and periods – the random 

effects hierarchical age-period-cohort model is the most appropriate specification. 
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AGE-PERIOD-COHORT ANALYSIS OF REPEATED CROSS-SECTION SURVEYS: 

FIXED OR RANDOM EFFECTS? 

 

INTRODUCTION 

 

For the past 80 years or so, demographers, epidemiologists, and social scientists have 

attempted to analyze data using age (A) and time-period (P) as explanatory variables to study 

phenomena that are time-specific. An analytic focus in which cohort (C) membership, as defined 

by the period and age at which an individual observation can first enter an age-by-period data 

array, is also important for substantive understanding (Ryder 1965). Accordingly, investigators 

have developed models for situations in which all three of age, period, and cohort (APC) are 

potentially of importance to studying a substantive phenomenon (Feinberg and Mason 1985).  

One common goal of APC analysis is to assess the effects of one of the three factors on 

some outcomes of interest net of the influences of the other two time-related dimensions. Age 

effects represent the variation associated with different age groups brought about by 

physiological changes, accumulation of social experience, and/or role or status changes. Period 

effects represent variation over time periods that affect all age groups simultaneously – often 

resulting from shifts in social, cultural, or physical environments. Cohort effects are associated 

with changes across groups of individuals who experience an initial event such as birth or 

marriage in the same year or years; these may reflect the effects of having different formative 

experiences for successive age groups in successive time periods (Robertson, Gandini, and Boyle 

1999; Glenn 2003). Analysts generally agree that methodological guidance is needed to address 
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the fundamental question of how to determine whether the phenomenon of interest is cohort-

based or some other factors such as age or calendar year are more relevant. 

The Age-Period-Cohort (APC) accounting/multiple classification model developed by 

Mason, Mason, Winsborough, and Poole (1973) has served for over three decades as a general 

methodology for estimating age, period, and cohort effects in demographic and social research. 

This general methodology focuses on the APC analysis of data in the form of tables of 

percentages or occurrence/exposure rates of events such as births, deaths, disease incidence, 

crimes, etc. A major methodological challenge arises in the APC analysis of tabulated data due 

to the “identification problem” induced by the exact linear dependency between age, period, and 

cohort – Period = Age + Cohort – when the time intervals used to tabulate the data are of the 

same length for the age and period dimensions. This identification problem has drawn great 

attention in statistical studies of human populations. A number of methodological contributions 

to the specification and estimation of age-period-cohort models have occurred in recent decades 

in a wide variety of disciplines, including social and demographic research (e.g., Fienberg and 

Mason 1978, 1985; Glenn 1976; Hobcraft, Menken, and Preston 1982; O’Brien 2000; Wilmoth 

1990), biostatistics and epidemiology (e.g., Clayton and Shifflers 1987; Fu 2000; Holford 1992; 

Knight and Fu 2000; Kupper, Janis, Salama, Yoshizawa, and Greenberg 1983; Osmond and 

Gardner 1982; Roberton and Boyle 1998). Most of these studies focus on aggregate population 

data where researchers have few choices of time-interval widths for the age and period groups.  

Increasingly, however, micro datasets in the form of series of repeated cross-section 

sample surveys are available to demographers, epidemiologists, and social scientists. These 

datasets create both new opportunities and challenges to APC analysis. The opportunities lie in 

the fact that these repeated cross-section survey data can not only be aggregated into population-
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level contingency tables for conventional multiple classification models, but also provide 

individual-level data on both the responses and a wide range of covariates, which can be 

employed for much finer-grained regression analysis (Yang and Land 2003).  The challenge for 

APC analysis of repeated cross-section surveys then becomes how social scientists can take 

advantage of the individual-level data in these datasets as opposed to grouping the data.  

While straightforward regression analyses on the micro sample data can be conducted, 

Yang and Land (2003) noted that this may violate the independence-of-errors assumption on 

which conventional fixed-effects regression models (e.g., ordinary least squares or logit 

regression) are based. They developed a hierarchical age-period-cohort models (HAPC models) 

approach to address this problem. Specifically, they applied two-level and three-level models to 

APC data to ascertain whether or not there are any clustering effects in survey responses by 

higher level units, survey year or birth cohort. In recognition of a more complex data structure in 

which lower-level units (individuals) are cross-classified by two higher-level units (cohorts and 

periods), Yang (2004) refined this HAPC approach to micro APC data by introducing a cross-

classified random-effects model (CCREM).  

  Both Yang and Land’s (2003) and Yang (2004)’s approaches prove to be promising 

strategies for APC analyses. In this paper, we compare the random-effects model specification to 

an alternative specification, namely, a fixed-effects hierarchical APC model – with a focus on 

primarily two considerations. First, the assumption of the random-effects model that the level-2 

effects are independent of the level-1 regressors needs to be examined. Second, in this HAPC 

application of hierarchical linear models, the sample sizes at the level-2 or contextual effects-

level, that is, the numbers of birth cohorts and periods, are small and therefore can be viewed as 

specific groups. Cohort and period effects, therefore, may just as easily be viewed as fixed rather 
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than random. In this paper, we lay out and compare these two approaches side-by-side, and we 

exploit the properties of each model to assess the empirical applicability of the independence 

assumption.  As a substantive illustration, we continue to analyze data on verbal test scores from 

15 cross-sections of the General Social Survey, 1974-2000.  These data have been the subject of 

recent debates in the sociological literature.  While the primary focus of this paper is 

methodological, we note how our approach can be used to address these debates by identifying 

and estimating the separate age, period, and cohort components of change. 

The paper is organized as follows.  In the next section, we briefly review the APC 

identification problem and recent methodological developments in solving this problem. We then 

summarize conventional methodological guidelines for and against the treatment of certain effect 

parameters in hierarchical regression models as fixed or random and guidelines for model 

specifications.  This is followed by sections that describe the data to be analyzed and the models 

to be compared.  Results then are reported.  A conclusion section discusses the findings and 

reports conclusions from this methodological study. 

 

THE APC ACCOUNTING MODEL AND THE IDENTIFICATION PROBLEM 

 

In order to specify the models to be estimated, it will be useful to review briefly the Age-

Period-Cohort accounting/multiple classification model that was articulated for demographic 

and social research some 30 years ago by Mason, Mason, Winsborough, and Poole (1973).  For 

mortality rates tabulated in standard arrays with age groupings defining the rows, periods of data 

defining the columns, and cohorts defining the diagonals, this model can be written in linear 

regression form as: 
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 ijkjiijijij PDM egbam ++++== /    (1) 

where Mij denotes the observed occurrence/exposure rate of deaths for the i-th age group for i = 

1, …, a age groups at the j-th time period for j = 1, …, J, Dij denotes the number of deaths in the 

ij-th group, Pij denotes the size of the estimated population in the ij-th group, the population at 

risk of death, m denotes the intercept or adjusted mean death rate, ai denotes the i-th row age 

effect or the coefficient for the i-th age group, bj denotes the j-th column period effect or the 

coefficient for the j-th time period, gk denotes the k-th diagonal cohort effect or the coefficient for 

the k-th cohort for k = 1,…,(a+p-1), with k=a-i+j, and eij denotes the random errors with 

expectation E(eij) = 0.  

Conventional age-period-cohort models as represented in Eq. (1) fall into the class of 

generalized linear models (GLIM) that can take various alternative forms such as the log-linear 

regressions and logit regressions.  They can be treated as fixed effect generalized linear models 

after a reparametrization to center the parameters: 

0=== ÊÊÊ kkjjii gba    (2) 

Alternatively, constraints may be set by identifying one of each of the age, period, and cohort 

categories as the reference category.  

After the re-parameterization of Eq. (2), model (1) can be written in the conventional 

matrix form of a least-squares regression: 

eb += XY        (3) 

where Y is a vector of mortality rates or log-transformed rates, X is the regression design matrix 

consisting of “dummy variable” column vectors for the vector of model parameters b: 

T
papa ),...,,,...,,,...,( 211111 ����= ggbbaamb    (4) 
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and e is a vector of random errors with mean 0 and constant diagonal variance matrix I2s , 

where I is an identity matrix. (Note:  In order to keep to standard linear regression model 

notation, we use b to denote the entire vector of model coefficients in equation (3).) The ordinary 

least squares (OLS) estimator of the matrix regression model (3) is the solution b of the normal 

equations: 

YXXXb TT 1)(
�=       (5) 

But this estimator does not exist  (i.e., is not a unique vector of coefficient estimates) since the 

design matrix X is singular with one less than full rank and (XTX) is not invertible, which is due 

to a perfect linear relationship between the age, period and cohort effects:  

Period – Age = Cohort.   

This is the model identification problem of APC analysis. It implies that there are an infinite 

number of possible solutions of the matrix equation (5) (i.e., OLS estimators of model (3)), one 

for each possible linear combination of column vectors that results in a vector identical to one of 

the columns of X. Therefore, it is not possible to separately estimate the effects of cohort, age, 

and period without assigning certain constraints to the coefficients in addition to the 

reparameterization (2). Since Fienberg and Mason (1978), the conventional approach to 

identification of the APC accounting model in demography has been to impose equality 

constraints on two or more coefficients of the parameter vector (4).  Yang, Fu, and Land (2004) 

compare this standard approach with the Intrinsic Estimator (IE) method, an approach to the 

identification problem that yields a unique solution to (5) determined by the Moore-Penrose 

generalized inverse and removes the arbitrariness brought about by constraints on parameters.  

This comparison shows that the IE possesses the desirable statistical properties of unbiasedness 
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and relative statistical efficiency in APC analyses of tabulated rates with a finite number of time 

periods of data.   

 

SOLVING THE IDENTIFICATION PROBLEM IN REPEATED CROSS-SECTION DATA 
DESIGNS – HAPC MODELS 

 

In the context of micro-level data from repeated cross-section sample surveys, Yang and 

Land (2003) noted that the existence of individual-level data on the age, period, and cohort 

membership of each respondent in the surveys opens up new opportunities for solving the APC 

identification problem. Specifically, access to the individual-level observations allows the 

analyst to group the age, period, and/or cohort properties of sample members into time intervals 

of different lengths. This breaks the underidentification problem of Eq. (3) and allows finite-

valued numerical solutions of Eq. (5) to exist.  

To illustrate this, it will be helpful to consider the application of the classical APC 

accounting model of Eq. (3) to, say, the following five sample members, ages 60, 61, 62, 63, and 

64, each of whom is a member of the same five-year birth cohort, the 1930-34 birth cohort, and 

each of whom is a respondent in a sample survey conducted in 1990: 

Y60,1990,1930-34  =  m  +  a60 +  b1990  +  g1930-34  +  e60,1990,1930-34  (6.1) 

Y61,1990,1930-34  =  m  +  a61  +  b1990  +  g1930-34  +  e61,1990,1930-34  (6.2) 

Y62,1990,1930-34  =  m  +  a62  +  b1990  +  g1930-34  +  e62,1990,1930-34  (6.3) 

Y63,1990,1930-34  =  m  +  a63  +  b1990  +  g1930-34  +  e63,1990,1930-34  (6.4) 

Y64,1990,1930-34  =  m  +  a64  +  b1990  +  g1930-34  +  e64,1990,1930-34  (6.5) 

It can be seen from this representation of the classical APC model (1) for these sample members 

that the exact linear dependence of the A, P, and C categories that occurs in tabulated data with 
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age, period, and cohort time intervals of equal length is broken.1 That is, from knowledge of the 

period of this survey (1990) and the birth cohort (1930-34) in which each of these samples 

respondents is a member, it is not possible to determine the exact age of each respondent. In fact, 

the general five-year age category (60-64) of which each of these respondents is a member can 

be determined. But, at the level of the individual respondent, this is not an exact linear 

dependence.  

Under Eq. (6), the specification of the error terms indicates the possibility that sample 

respondents in the same cohort group and/or survey year may be similar in their responses to the 

verbal test questions due to the fact that they share random error components (i.e., through 

random cohort and/or period components of ei,1990,1930-34)  unique to their cohorts or periods of 

the survey. A failure to assess this potentially more complicated error structure adequately in 

APC analysis may have serious consequences for statistical inferences. The standard errors of 

estimated coefficients of standard regression models like Eq. (3) may be underestimated, leading 

to inflated t-ratios and actual alpha levels that are larger than the nominal .05 or .01 levels2. This 

implies that multilevel or hierarchical regression models should be employed for adequate 

estimates of the error variances (Goldstein 2003; Raudenbush and Bryk 2002; Snijders and 

Bosker 1999).  Yang and Land (2003) proposed both two-level and three-level APC model 

specifications and labeled this approach as the Hierarchical APC (HAPC) model.  

                                                 
1 In their empirical application of the APC model to the verbal test score data described later in the text, Yang and 
Land (2003) noted that the linear dependence/identification problem could be further broken by using the results of 
their application of the Intrinsic Estimator to the verbal test score data aggregated and grouped into standard APC 
table format.  This application of the IE found that the age curve of the data was well described as a quadratic 
function of age.  By using this information to specify the relationship between an individual’ s verbal test score and 
her/his age as quadratic, Yang and Land further broke the underidentification problem of the APC accounting 
model.  This quadratic specification of the individual-level age curve also is used in the models analyzed in the 
present paper. 
2 See Hox and Kreft (1994) for a thorough discussion of the statistical limitations of the use of traditional statistical 
models for multilevel analysis. In cases involving even a small amount of covariation among the observations within 
groups or categories, Hox and Kreft indicate that the assumption of independence of error terms is violated and that 
this can lead to Type I errors that are much larger than the nominal alpha level. 
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The two-level HAPC is useful if we separately consider the periods or the cohorts as 

level-2 units. The three-level HAPC is useful when we are interested in birth cohorts at level-2 

who are nested within periods at level-3. But it requires a strict nested 3-level design where 

level-1 units are nested within level-2 units, which are then completely nested within level-3 

units. So it is assumed that each individual belongs to one and only one cohort, and each cohort 

belongs to one and only one period. This is a simplification of the APC data. In a recent paper 

that further extends the HAPC models, Yang (2004) pointed out that in typical cross-sectional 

surveys, individuals are nested within cells created by the cross-classification of two types of 

social context: birth cohorts and survey years. That is, respondents are members simultaneously 

in cohorts and periods. Yang (2004) therefore formulated a cross-classified random-effects APC 

model (CCREM) to account for this particular APC data structure.  

The HAPC modeling framework developed by Yang and Land (2003; Yang 2004) has 

enhanced our ability to estimate separate age, period, and cohort effects through the estimation of 

variance components. It also enriches the families of analytical models in demography that can 

be applied to study APC trends by incorporating explanatory variables in hierarchical regression 

models. In this paper, we consider two additional conditions that may affect applications of the 

HAPC models in demographic studies. First, as is the case for all mixed effects regression 

models, desirable statistical properties of HAPC models rest on the assumption that the level-2 or 

contextual effects – the cohort and period effects – are independent of the level-1 or individual-

level regressors. An alternative approach for HAPC models could be based on a fully fixed-

effects HLM regression formulation for which this independence assumption is not necessary. 

Second, in finite time period demographic data, the number of periods or birth cohorts are 

usually smaller than 10. As commented below, this suggests a possible advantage in modeling 



  

 - 10 - 

these effects as fixed.  In the following section, we discuss the rationale of the model 

specification in more details. 

 

WHEN TO USE FIXED OR RANDOM COEFFICIENT MODELS? 
THE CONVENTIONAL WISDOM 

 

The literature on hierarchical/multilevel regression models contains some general 

guidelines on when certain effect coefficients should be treated as fixed or random.  To articulate 

these guidelines, consider the simplest possible hierarchical model that has a level-1 or 

individual-level model: 

ijijij exY ++= 10 bb        (7) 

where Yij is a response or dependent variable for individual i in group j, xij is an explanatory 

variable or regressor for individual i in group j, b0 is the intercept parameter for the regression 

model, b1 is the slope parameter of the regression, and eij is a random error term.  Suppose that 

the intercept b0 is group-dependent and that it varies randomly among J observed groups.  To 

model this random variation, we specify the level-2 or group-level model: 

jr0000 += gb .        (8) 

This level-2 model separates the group-dependent intercept into an average intercept among the 

groups, g00, plus a group-level deviation or error, r0j.  Substitution of Eq. (8) into Eq. (7) then 

yields the combined model: 

ijjijij erxY +++= 0100 bg .      (9) 

The values of the r0j are the main effects of the groups:  conditional on having a specific X-value 

and being in group j, the expected Y-value for individual i deviates by r0j from the average 

expected value for all individuals over all groups.  Note again that this is the simplest possible 
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formulation of a hierarchical model; a more general formulation would allow for the possibility 

that the slope coefficient in Eq. (7) could vary among the groups, and there could be more than 

one explanatory variable in Eq. (7).  

As a statistical model, Eq. (9) can be treated in two ways: 

(1) As a fixed-effects model, wherein the r0j are treated as fixed parameters, J in number.  

This approach leads to specific instance of a fixed-effects regression model, namely, 

the conventional analysis of covariance model, in which the grouping variable is a 

covariate. 

(2) As a random coefficients or random intercepts model, wherein the r0j are assumed to 

be independent identically distributed random variables.  These errors now are 

assumed to be randomly drawn from a population with zero mean and an a priori 

unknown variance.  This assumption is equivalent to the specification that the group 

effects are governed by mechanisms or processes that are roughly similar from group 

to group and operate independently among the groups.  This is termed the 

exchangeability assumption.  The random coefficients model also requires the 

assumption that the random level-2 or contextual effects, i.e., the r0j coefficients, are 

distributed independently of the level-1 regressors.   

These two approaches to the model of Eqs. (7)-(9) imply that hierarchical data generally can be 

analyzed in two different ways, using models with fixed or random group-level coefficients.  

Which of these two specifications is the most appropriate in a given situation depends on a 

number of considerations. 
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 Goldstein (2003, pp. 3-4) and Snijders and Bosker (1999, pp. 43-44) provide summaries 

of conventional statistical wisdom and methodological guidelines for choosing between the fixed 

or random specifications.  They point out that: 

n If the groups are regarded as unique entities and the objective of the analysis is 

primarily to draw conclusions pertaining to each of the J groups, then it is appropriate 

to use the conventional analysis of covariance model. 

n If the groups are regarded as a sample from a (real or hypothetical) population and the 

objective of the analysis is to make inferences about this population, then the random 

coefficients model is appropriate. 

n The fixed-effects model explains all differences among the groups by the fixed-effect 

adjustments (through the use of indicator or dummy variables to represent the group-

level adjustments) to the intercept coefficient of Eq. (7).  This implies that there is no 

between-group variability left that could be explained by group-level variables.  

Therefore, if the objective of the analysis is to test effects of group-level variables, the 

random coefficient model should be used.  The exception to this guideline pertains to 

the case wherein the analyst introduces explicitly measured group-level variables that 

are hypothesized to account for the group-level effects.3  In this case, however, the 

model cannot at the same time incorporate indicator variables for the group-level 

fixed-effect adjustments.  Rather, the analyst must assume that the group-level fixed-

effect adjustments are completely accounted for by the explicitly measured group-

level variables. 

                                                 
3 In the context of the age-period-cohort models that are the subject of this paper, such an incorporation of explicitly 
measured group-level variables modifies the basic APC accounting model described later in the text towards that of 
the age-period-cohort-characteristics model as described by O’ Brien (2000) and variations thereon. 
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n The random coefficient model typically is used with some additional assumptions. 

Most importantly, as noted above, it requires that the random residuals by groups are 

orthogonal to independent variables, which implies that 0),( 0 =Xrcorr j . In addition, 

in conventional normal errors HLM models, it is assumed that the random 

coefficients r0j and eij are normally distributed.  If these assumptions are poor 

approximations to the characteristics of a specific set of empirical data (e.g., the 

regressors are not independent of the random coefficients, or there is high density in 

the tails of the distributions of the errors), then they assumptions should be modified. 

n The choice between fixed- and random-effects formulations can be related to sample 

sizes.  Snijders and Bosker (1999, p. 44) state that the following rule of thumb often 

works in educational and social research:  when J, the number of groups is small, say 

J < 10, use the analysis of covariance approach, because the small number of groups 

does not contain sufficient information about the population of groups from which the 

J groups are sampled to make reliable inferences; if J is not small, say J > 10, but nj, 

the number of observations in group j is small or of moderate size, say nj < 100, then 

use the random coefficients model, as 10 or more groups is too large to regard each 

group as a unique entity; if the group sizes are large, say nj > 100, then it does not 

matter which view we take.   

These, then, are several of the main considerations that conventional statistical wisdom indicates 

should be taken into account in deciding of fixed versus random-effects formulations of 

hierarchical statistical models.  After describing the data and the specific model specifications to 

be studied herein, we assess how well these guidelines hold up in the context of the HAPC and 

CCREM models developed by Yang and Land (2003) and Yang (2004). 
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THE VERBAL TEST SCORES CONTROVERSY AND DATA 

 

Questions Regarding Trends in Verbal Ability 

A series of articles published in the American Sociological Review in 1999 center upon 

the existence of an intercohort decline in verbal ability in the GSS 1974 to 1996.  The debate was 

initiated by Alwin (1991) and Glenn’ s (1994) finding of a long-term intercohort decline in verbal 

ability beginning in the early part of the 20th century.  Wilson and Gove (1999) took issue with 

this finding and argued that the Alwin and Glenn analyses confuse cohort effects with aging 

effects. Wilson and Gove also suggested the possibility of a curvilinear age effect and the 

importance of treating the collinearity between age and cohort in the GSS data. While Alwin and 

Glenn assumed that period effects are minimal or null, Wilson and Gove (1999: 263) found “that 

year of survey [time period] is negatively related to verbal score when education is controlled” 

and considered this as an indication of “the presence of a period effect”. In response, Glenn 

(1999) disagreed that the decline in GSS vocabulary scores resulted solely from period 

influences and also argued against the Wilson and Gove claim that cohort differences actually 

reflected only age effects. After reexamining aging versus cohort explanations, Alwin and 

McCammon (1999) similarly insisted that aging explains only a tiny portion of the variation in 

verbal ability data and therefore is not sufficient to account for the contributions of unique cohort 

experiences to the decline in verbal skills.  

The above studies have employed graphical and regression analyses to suggest patterns of 

verbal score variations along age, period, and cohort categories. As we revisit this interesting 

puzzle, we find some aspects of these studies invite further examination before definitive 

conclusions can be drawn. First, although the graphs presented in Wilson and Gove (1999) are 
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helpful in obtaining general qualitative impressions about age and cohort patterns, they are of 

limited analytic value because they are unidimensional. For example, Wilson and Gove show a 

plot of the mean verbal score curve adjusted for education that decreases across cohorts born 

from 1915 to 1975. This curve cuts across a number of periods for certain age groups. Thus, the 

shape of this cohort curve potentially is affected both by varying age effects and by varying 

period effects. Statistically, the curve represents gross age/cohort effects, which should be 

adjusted by controlling other relevant factors (Mason and Smith 1985; Yang, Fu, and Land 

2003). Furthermore, a quantitative assessment of how age and period effects operate to influence 

the shape of this cohort curve cannot be obtained by a simple visual examination of graphs like 

those used by Wilson and Gove, but need to be made through statistical modeling.4  

Second, although all authors involved in this debate utilized some statistical modeling 

procedures, no analyses were conducted to assess the age and cohort effects simultaneously 

while controlling for period effects due to the APC identification problem. For instance, Wilson 

and Gove (1999) estimated age-period regression models for four age groups; in reply to Wilson 

and Gove, Glenn reported a regression analysis of verbal scores on year (period) of the survey 

for five age groups. In yet another approach, Alwin and McCammon (1999) examined age 

effects within cohorts and vice versa, assuming minimum period effects. How tenable are the 

assumptions of omitting one of the three time dimensions?  Given the long period of time the 

surveys cover (27 years), ignoring the effect of historical time period may lead to discrepant 

findings regarding either age or cohort effects, and the same holds for ignoring cohort effects.  

In sum, the previous findings on trends in verbal scores are interesting and suggestive. 

But until age, period, and cohort effects are simultaneously estimated, the question of whether 

                                                 
4 A more detailed description of the limitations of graphical APC analysis is available by Kupper et al. (1985).  
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the trends are due to age, period, or cohort components remains incompletely resolved. When 

more powerful statistical modeling strategies become available to APC analysts, more systematic 

analyses on these verbal data can be carried out. We use this specific example to motivate the 

statistical methodology we present. The substantive results are, therefore, presented for the 

purpose of illustration. A full substantive analysis will follow in another paper. 

 

The General Social Survey (GSS) Data and Variables 

 We analyze verbal test score data from 15 cross-sections of the General Social Survey 

(GSS), 1974-2000. This is an extension of the 1974-1996 data on which the controversy is based 

to the most recently available wave of the GSS. In these surveys, a survey respondent’ s verbal 

ability is measured by a composite scale score named WORDSUM, which is constructed by adding 

the correct answers to ten verbal test questions and ranges from zero to 10. WORDSUM is reported 

by previous studies to have an internal reliability of .71 (Wilson and Gove 1999). The data 

include 19,500 respondents who had measures on WORDSUM and other covariates across all 

survey years. Variable descriptions and summary univariate statistics for the data used herein are 

shown in Table 1. 

 

[Table 1 about here] 

 

 The variable WORDSUM is available for 15 survey years of the GSS from 1974 to 2000. It 

is approximately normally distributed with a mean around 6.  The respondents age from 18 to 89. 

The oldest cohort member was born in 1890 and the youngest born in 1982. We grouped 
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individuals into 19 five-year birth cohorts for our analyses. In the pooled cross-section data, 57% 

are female and 15% are Black. The average years of education completed is around 12.7 years.5  

Like typical cross-sectional surveys, the data on verbal ability include individuals who 

are nested within cells created by the cross-classification of two types of social context: birth 

cohorts and survey years. This data structure is displayed in Table 2. Each row is a cohort and 

each column is a year. The numbers in this matrix are the counts – the numbers of individuals 

who belonged to a given birth cohort and were surveyed in a given year. 

  

[Table 2 about here] 

 

We next describe the format of the cross-classified random effects model (CCREM) that 

Yang (2004) applied to the GSS verbal test score data.  We then describe the format of the 

corresponding fixed effects hierarchical model for analysis of these data with which comparisons 

will be reported below. 

 

HIERARCHICAL APC MODELS OF THE GSS DATA: CCREM vs. CCFEM 

 

 Yang (2004) specified a cross-classified random-effects model (CCREM) for the APC 

analysis to assess the relative importance of the two contexts, cohort and period, in 

understanding individual differences in verbal test outcome. Two prominent examples of 
                                                 
5 In addition to the individual-level explanatory variables, Yang and Land (2003) and Yang (2004) used contextual 
variables in their analysis that represent cohort characteristics.  As noted earlier in the text, however, it is not 
possible to use explicitly measured group-level variables in fixed-effects multilevel models without making the 
assumption that the measured group-level variables account for all of the group-level effects – cohort and period 
effects in the present context.  For this reason, and in order to keep the comparison of the random and fixed effects 
specifications as direct and simple as possible, the analyses reported herein will not incorporate group-level 
measured variables. 
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applications of such models to social data can be found in Raudenbush’ s (1993, 2002) study of 

neighborhood and school effect on children’ s attainment and Goldstein’ s (2003) study of middle 

school and high school effects on students’  educational outcome.  

 In such a model applied to the verbal test data, one specifies variability in WORDSUM 

associated with individuals, cohorts, and periods.6  

Level-1 or “ Within-Cell”  Model: 

ijkijkijkijkijkijkjkijk eBLACKFEMALEEDUCATIONAGEAGEWORDSUM ++++++= 543
2

210 bbbbbb
),0(~ 2sNeijk          (10) 

Level-2 or “ Between-Cell”  Model: 

kjjk vu 0000 ++= gb , ),0(~0 uj Nu t , ),0(~0 vk Nv t      (11) 

Combined Model: 

ijkijkijkijk EDUCATIONAGEAGEWORDSUM 3
2

210 bbbg +++=   

  ijkkjijkijk evuBLACKFEMALE +++++ 0054 bb    (12) 

for  i = 1, 2, … , njk individuals within cohort j and period k; 

j = 1, … , 19 birth cohorts;  

k = 1, … , 15 time periods (survey years); 

where within each birth cohort j and survey year k, the respondent i’ s verbal score is modeled as 

a function of age, age squared, education, gender and race, the intercept then varies by birth 

cohort and time period, and all continuous covariates are centered around their means. 

In this CCREM, jk0b  is the intercept or “ cell mean” , that is, the mean verbal test score of 

individuals who belong to birth cohort j and surveyed in year k; 51 , bb K  are the leve-1 fixed 

                                                 
6 Note that this CCREM is a random-intercepts model, which is based on previous works by Yang (2004) and Yang 
and Land (2003). They suggest that only the intercepts, but not level-1 slopes, exhibit significant random variation 
across cohorts and periods in the GSS verbal test score data. 



  

 - 19 - 

effects; ijke  is the random individual effect, that is, the deviation of individual ijk’ s score from 

the cell mean, which are assumed normally distributed with mean 0 and a within-cell variance 

2s ; 0g  is the model intercept, or grand-mean verbal test score of all individuals; u0j is the 

residual random effect of cohort j, that is, the contribution of cohort j averaged over all periods, 

on jk0b , assumed normally distributed with mean 0 and variance ut ; and v0k is the residual 

random effect of period k, that is, the contribution of period k averaged over all cohorts, assumed 

normally distributed with mean 0 and variance vt . In addition, j0b = ju00 +g  is the cohort verbal 

test score averaged over all periods; and k0b kv00 += g  is the period verbal test score averaged 

over all cohorts. 

We seek to compare parameter estimates of the CCREM of Eqs. (10)-(12) with those 

obtained from a corresponding cross-classified fixed-effects model (CCFEM) where the effects 

of the cohorts uoj, j = 1,…,J and the effects of the time periods (years) of the surveys vok, k = 

1,…,K are assumed fixed and unique to each of the respective cohorts and period rather than 

variable and random.  In practice, the fixed effects of the cohorts and periods are estimated by 

the incorporation of two sets of indicator/dummy variables for J –1 cohorts and K – 1 periods. 

Therefore, Eq (11) changes to 

ÊÊ
��

++=
15

2
2

19

2
100

k
kk

j
jjjk PeriodCohort gggb ,     (13) 

where the variance in the intercept, jk0b , is assumed to be completely captured by the indicator 

variables for cohorts and periods. Substituting this expression into Eq (10) yields the combined 

CCFEM: 

 ijkijkijkijk EDUCATIONAGEAGEWORDSUM 3
2

210 bbbg +++=   
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We noted earlier that there are two primary considerations on which we focus our 

methodological assessment of the comparative performance of the CCREM and CCFEM models.  

One of these is the assumption of the random-effects model that the level-2 effects are 

independent of the level-1 regressors.   Note that most conventional empirical applications of 

hierarchical linear models proceed without a careful examination of the empirical veracity of this 

assumption.  By contrast, the comparative performance of the fixed and random-effects model 

specifications is a standard part of model criticism and assessment in longitudinal panel models 

(often referred to as pooled time-series cross-section models) in econometrics (see, e.g., Greene 

2000, pp. 837-841).  This is due to the general results in statistical theory for mixed fixed-

random effects models to the extent that, under the null hypothesis of zero correlation between 

the individual-level regressors and the contextual effects coefficients, both the ordinary least 

squares estimator (OLS) of the individual-level coefficients in the fixed-effects model and the 

restricted maximum likelihood (REML) estimator of those coefficients in the random-effects 

model are consistent, but the OLS estimator is inefficient.  Therefore, under the null hypothesis, 

the two estimators should produce estimates of the individual-level coefficients that do not differ 

systematically. 

The present application of the CCREM and CCFEM models to the repeated cross-section 

data on verbal ability in the GSS differs from standard longitudinal panel designs in that the 

same individuals are not repeatedly surveyed in consecutive waves of the GSS.  However, given 

the temporal dimensions embedded in the cohort and time period contextual variables as we have 

defined them, it is important to explicitly address the independence assumption.  We therefore 

examine this assumption of the independence of the random effects and the individual-level 
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regressors in two ways.  First, we estimate both the CCREM and the CCFEM models and 

qualitatively assess the resulting model fits and the parameter estimates and performance of each 

with respect to the data.  Second, we obtain statistical tests by applying a form of what is known 

in the econometric analysis of pooled time series cross section regression models as a Hausman 

specification test (see Hausman and Taylor 1981; Baltagi 1995).  The Hausman test is a Wald 

chi-squared test of the form: 

]ˆ[ˆ]ˆ[][ 12 bbc -S-== �

bbKW T  

where, in the present case, b denotes the vector of individual-level regression coefficients 

estimated from the CCFEM model, b̂ denotes the corresponding vector of regression 

coefficients estimates from the CCREM model, and ]̂[]̂[ˆ bVarbVar -=S  is the difference of the 

variance-covariance matrices of the two estimators (the constant term is excluded from all 

vectors and matrices).  Under the null hypothesis that the cohort and period random effects in the 

CCREM model are independent of the individual-level regressors, W is distributed as chi-

squared with K degrees of freedom, where K is the dimension of the b and b vectors. 

 A second focus of our assessment of the comparative performance of the CCREM and 

CCFEM models pertains to their ability to handle the relatively small sample sizes at the level-2 

or contextual effects-level, that is, the relatively small numbers of birth cohorts and periods.  But 

even with 19 cohorts and 15 time periods, the GSS data analyzed herein have larger numbers of 

cohorts and periods than would be the case with many repeated cross-section demographic 

surveys (e.g., the Current Population Survey Supplements on fertility histories or National 

Health Interview Surveys).  Therefore, in order to make our assessment of the performance of 

these two models more like that typically encountered in demographic surveys, we “ thin”  the 

GSS data further by selecting five recent cohorts from the last five of the 15 GSS surveys and re-
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estimating the CCREM and CCFEM models on this reduced set of data.  A critical question 

pertains to whether the performance of the two models is comparable on this reduced dataset, as 

the conventional methodological wisdom cited earlier would suggest that fixed-effects model 

specifications would be better when there is such a small number of contextual units in the 

analysis. 

 

RESULTS 

 

Table 3 reports the parameter estimates and model fit statistics for the CCFEM (Eq. 14) 

and CCREM (Eq. 12) models estimated on the 15 GSS repeated cross-section surveys. Results 

from both models show that all individual covariates are significantly related to WORDSUM. The 

age effect is curvilinear and concave. Not surprisingly, education has a strong positive effect on 

one’ s verbal ability. Females and whites tend to score higher on verbal tests. Taken together, 

these regressors account for about 30% of the unconditional level-1 variance (not shown).  

The parameter estimates for these individual effects are remarkably similar for the 

CCFEM and CCREM. The main difference is in the estimated intercept and its standard errors. 

The CCFEM reports a larger mean verbal score and a standard error (0.285) that is more than 

five times larger than that produced by the CCREM (0.059), indicating much more uncertainty in 

the mean verbal score estimate. This shows that the indicator variables representing the fixed 

cohort and period effects do not explain well the variance for the intercept.  

 

[Table 3 about here] 
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The next section in Table 3 shows the estimated fixed effects and random effects for the 

19 cohorts and 15 time periods. In the CCFEM, these correspond to the coefficient estimates for 

the 18 cohorts, j1̂g  and 14 periods, k2̂g , and their standard errors, with the last cohort and the 

period being the reference groups. In the CCREM, the residual random effects are represented by 

ju 0̂  for all 19 birth cohorts and kv0̂ for 15 survey years. They seem to be different in magnitude 

and directions from those estimated by the fixed-effects model. This is because in the CCFEM 

formulation, the fixed cohort and period effects are estimated jointly so that the reference group 

is 1980 birth cohort in year 2000. If we calculate the predicted value for each cohort averaging 

across the 15 time periods and vice versa, we obtain essentially the same effects revealed in the 

CCREM where the random residual effects for cohorts and periods are obtained so that each 

represent the net effects averaged across the other. The results for the variance components 

analysis suggest that, controlling for all the individual covariates, the residual variation between 

cohorts is still significant and is estimated to be 0.039, whereas the residual period variation is 

close to zero. The inclusion of the age, education, gender and race effects reduces the cohort 

variance by about 70% and the period variance by more than 90% (not shown). The AIC 

statistics show that the CCREM has a better model fit to the verbal ability data.   

 As a formal test of the equality of the coefficients estimated by the fixed- and random-

effects models, we next apply the Hausman specification test described above. The results are 

shown in Table 4. The left panel summarizes the coefficient estimates under the CCFEM and 

CCREM specifications based on the full sample where there are 19 birth cohorts and 15 periods. 

The variance-covariance matrices for the two sets of parameter estimates are then obtained. The 

Hausman test is: 

 H0: Differences in the estimated coefficient vectors are not systematic 
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     2c (5) = )̂ˆ()̂ˆ( 1 bb -S- �

bb T , )̂()̂( bVarbVar -=S  

     = 11.371 (p=0.045) 

Since the sample size on which these coefficient estimates are based is very large (N = 19,500), 

the standard errors of these coefficients are very small.  It, therefore, is appropriate to use a p-

value of .001 for assessing this Wald- 2c statistic.  Accordingly, we fail to reject the null 

hypothesis of no systematic differences in the coefficient vectors. Therefore, the test shows that 

the assumption that the random effect effects, ju0 and kv0 , are uncorrelated with the regressors is 

acceptable and the fixed-effects model does not outperform the random-effects model for this 

particular dataset. Instead, the CCREM has the advantages of smaller standard error estimates for 

the level-1 coefficients and a better model fit. Therefore, the random-effects model should be 

chosen for the analysis. 

 

[Table 4 about here] 

 

 To determine the possible effect of smaller numbers of surveys and birth cohorts that are 

more typical of demographic data on the model specification for APC analysis, we next replicate 

the above analysis for the sub-sample where only the last five periods (1993 to 2000) and five 

recent cohorts (1950 – 1970) are included. The right panel of Table 4 shows the comparison of 

the effect estimates of CCFEM and CCREM. Since the Hausman test is not significant, the 

fixed-effects model is not necessarily better than the random-effects model even in such a small 

sample. This contradicts the conventional methodological wisdom reviewed earlier on choosing 

between a fixed- versus a random-effects model specification.  
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 Finally, we summarize the modeling results graphically with regards to the age, period, 

and cohort effects on the verbal ability. Note that in the HAPC model specification each cohort 

has a distinct intercept, j0b , that represents the cohort effect net of all the individual effects, and 

averaged across all time periods. The estimated cohort effect and the 95% confidence intervals 

based on the CCREM7 are plotted in Figure 1. There indeed is evidence in this graph for a 

decline in verbal ability for recent cohorts born since 1945. However, instead of a linear decline 

for cohort verbal ability starting in early 20th century estimated by previous researchers, there is 

evidence of more variation for older cohorts born before 1945. 

 Figure 1 also shows the period effect ( k0b ) net of all the individual effects and averaged 

across all birth cohorts. A slight V-shape curve occurs. There was a decrease in verbal ability 

from mid 1970s to late 1980s. Then it increased to the beginning level, followed by some small 

fluctuations into the late 1990’ s.  

Finally, the age effect is plotted as the predicted WORDSUM by each age, net of all the 

other factors and averaged across all cohorts and periods. The age effect is curvilinear over the 

life course and indicates that individual’ s verbal ability increases from late teens to about 50s as 

a result of accumulation of vocabulary through education and other social experiences. After the 

age of 55, however, one’ s verbal skills gradually decline due to many reasons related with aging, 

such as loss of memory. This is also consistent with theory of cognitive growth. 

 

[Figure 1 about here] 

 

                                                 
7 Since all continuous variables are mean centered, the cohort effect is the cohort intercept at the mean age and mean 
education, and for the reference sex-race group, white males. The same model was estimated for other three 
combinations of sex and race (white females, black females, and black males) and the results are similar. 
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DISCUSSION AND CONCLUSION 

 

 In this paper, we have described how to assess the adequacy of the hierarchical APC 

model’ s assumption in the context of repeated cross-section survey data that are increasingly 

available for demographic analysis. Specifically, we have compared the fixed- and random-

effects HAPC models in applications to verbal ability data in the U.S.  As noted earlier, both the 

fixed- and the random-effects models are superior to applications of conventional fixed-effects 

regression models estimated by ordinary least squares that do not take into account the effects of 

the contextual variables – the cohorts and time periods.  In the presence of contextual effects, 

these conventional regression models tend to underestimate standard errors and overestimate t-

tests, thus leading to incorrect inferences.   

In addition, however, both the random-effects and the fixed-effects models have their 

strengths and weaknesses.  Therefore, the choice between the two may be contingent upon a 

number of conditions such as correlations between the random components and the independent 

variables, sample sizes of cohorts and periods, whether contextual variables need to be 

incorporated, and properties of the specific demographic phenomena being modeled. Most 

generally, fixed-effects models require estimating unique effect coefficients for each higher-level 

unit: (J – 1) + (K – 1) parameters in all. Random-effects models instead estimate one parameter 

that represents the distribution of the errors.  With only small-to-moderate numbers of cohorts 

and time periods, conventional statistical methodology guidelines suggest that it might be more 

appropriate to treat the cohorts and time periods as unique entities and model them with a fixed-

effects specification. 
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Contrary to this conventional wisdom, however, the results from the CCREM and 

CCFEM analyses reported above favor the random-effects model specification regardless of 

whether the numbers of birth cohorts and time periods are moderate (19 cohorts and 15 time 

periods) or small (5 cohorts and 5 time periods).  A key problem with the fixed-effects 

specification appears to be the assumption that the indicator/dummy variables representing the 

fixed cohort and period effects fully explain all of the cohort and fixed effects.  That is, the 

CCFEM model does not allow for the possibility of any additional random variance associated 

with the individual cohort and period effects.  This implies that there is no unexplained between-

cohort and/or between-period variability left beyond that captured by the fixed cohort and period 

effects.  In the context of HAPC models, this appears not to be the best assumption.  Rather, with 

relatively large numbers of sample respondents for each cohort and time period, the random-

effects specification that allows for random variation in the cohort and/or period contexts appears 

to perform comparatively better. 

While we have used the verbal test score data as a convenient laboratory for this 

evaluative experiment on the CCREM and CCFEM models, and while more typically 

demographic response variables from repeated cross-section surveys might display other types of 

behavior, these findings are encouraging with respect to the applicability of random-effects 

formulation of the HAPC modeling framework.  In addition, we recommend that the evaluative 

strategy laid out here be used in assessments of the applicability of the fixed-effects and random-

effects specifications of the HAPC modeling framework to repeated cross-section survey data in 

demography.  Specifically, the version of the Hausman specification test described herein should 

be applied to assess the empirical veracity of the assumption that the cohort and time period 

random effects are distributed independently of the individual-level regressors.  Assuming this 
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specification test finds no evidence for systematic differences in the individual-level vectors of 

estimated coefficients from the fixed- and random-effects models, the analyst should proceed to 

use the random-effects model for substantive analyses. 
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Table 1. Summary Statistics for Verbal Ability Data from GSS: 1974 – 2000 
 

Outcome Description N Mean SD Min Max 
  WORDSUM A composite vocabulary test score 19500 6.02 2.15 0 10 
Independent Variables       
  AGE Respondent’ s age at survey year 19500 45.34 17.10 18 89 
  EDUCATION Respondent’ s years of schooling 19500 12.72 3.02 0 20 
  FEMALE Sex:  = 1 if female; =0 if male 19500 0.57 0.50 0 1 
  BLACK Race: = 1 if black; = 0 if white 19500 0.15 0.35 0 1 
Group Variables       
  Cohort Five-year birth cohorts 19   1890 1980 
  Period Survey year 15   1974 2000 



- 35 - 

Table 2. Two-way Cross-Classified Data Structure in the GSS: Number of Observations in Each Cohort-by-Period Cell 
 

                Year (K)               
Cohort (J) 1974 1976 1978 1982 1984 1987 1988 1989 1990 1991 1993 1994 1996 1998 2000 Total 

1890 12 18 8 0 0 0 0 0 0 0 0 0 0 0 0 38 
1895 31 25 19 19 6 0 0 0 0 0 0 0 0 0 0 100 
1900 62 52 49 27 18 17 13 11 5 2 0 0 0 0 0 256 
1905 88 69 68 43 38 23 11 12 11 11 15 15 10 0 0 414 
1910 77 89 69 75 50 48 34 27 25 29 13 31 27 18 8 620 
1915 109 111 84 100 81 81 42 36 37 41 37 60 39 24 27 909 
1920 115 104 112 110 73 97 60 53 40 56 55 85 59 32 37 1088 
1925 113 108 106 131 99 92 52 53 53 40 50 84 81 68 52 1182 
1930 129 92 90 111 81 95 47 54 43 62 43 86 72 45 64 1114 
1935 130 106 108 112 80 101 39 59 44 37 58 101 100 61 64 1200 
1940 119 140 130 127 100 142 49 74 49 65 58 134 117 65 78 1447 
1945 179 161 184 163 133 143 98 84 85 74 85 168 161 104 85 1907 
1950 179 180 197 199 170 185 101 94 95 111 99 173 169 101 111 2164 
1955 89 151 180 260 162 219 102 117 106 118 127 198 213 149 145 2336 
1960 0 8 59 175 186 190 109 121 102 118 103 231 208 161 147 1918 
1965 0 0 0 38 75 161 101 86 76 91 111 182 188 157 111 1377 
1970 0 0 0 0 0 29 32 48 55 77 81 157 188 116 145 928 
1975 0 0 0 0 0 0 0 0 0 1 23 59 128 84 107 402 
1980 0 0 0 0 0 0 0 0 0 0 0 0 4 34 62 100 
Total 1432 1414 1463 1690 1352 1623 890 929 826 933 958 1764 1764 1219 1243 19500 
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Table 3 HAPC Models of the GSS Verbal Score Data: CCFEM vs. CCREM 
  CCFEM   CCREM  
Individual Effects Coefficient se t Ratio Coefficient se t Ratio 
    INTERCEPT 6.456*** 0.285 22.62   6.167***  0.059   103.73  
    AGE 0.266# 0.090 2.96  0.030#  0.017     1.75  
    AGE2  -0.059*** 0.006 -9.94 -0.065*** 0.005   -11.83  
    EDUCATION 0.375*** 0.005 82.95   0.374*** 0.004    82.95  
    FEMALE 0.241*** 0.026 9.38   0.242***  0.025     9.40  
    BLACK -1.046*** 0.037 -28.45  -1.051***  0.036   -28.74  
 Fixed Effects Random Effects 
Cohort Coefficient se t Ratio Coefficient se t Ratio 

1890  -2.086  0.869   -2.40   -0.043    0.165  -0.26  
1895  -2.035   0.797  -2.55    -0.123    0.140   -0.88  
1900  -1.579   0.742   -2.13    0.069    0.113    0.61   
1905  -2.022   0.695   -2.91    -0.403   0.099   -4.06  
1910  -1.321   0.651   -2.03    0.079   0.088   0.89   
1915  -1.070   0.607   -1.76     0.192   0.078    2.44   
1920  -1.188   0.565   -2.10   -0.037   0.074   -0.50  
1925  -1.016   0.524   -1.94   0.008  0.071    0.12  
1930  -0.864   0.483   -1.79    0.030  0.071    0.46   
1935  -0.769   0.441   -1.74   0.004   0.070    0.05   
1940  -0.518   0.400   -1.29     0.126   0.068    1.85   
1945  -0.162   0.360   -0.45     0.354   0.065    5.41   
1950 -0.082   0.323   -0.25     0.326   0.065    4.99   
1955  -0.279   0.287   -0.97    0.026   0.066    0.38   
1960  -0.219   0.255   -0.86   -0.031   0.070   -0.44  
1965  -0.160   0.228   -0.70   -0.079   0.076   -1.03  
1970  -0.184   0.208   -0.88    -0.195   0.085   -2.29  
1975 -0.076   0.203   -0.37    -0.178    0.102   -1.73  
1980        0.000       .     .      -0.127    0.140   -0.91  

Period       
1974 0.678  0.242   2.80   0.035  0.040   0.86  
1976  0.676  0.225   3.00   0.063   0.040   1.58  
1978  0.533  0.207   2.56  0.008   0.039   0.19  
1982  0.418  0.173   2.41  -0.002   0.037  -0.06  
1984  0.414   0.159   2.60   0.024   0.039   0.60  
1987  0.234   0.134   1.74  -0.043   0.037  -1.15  
1988 0.068   0.132   0.51   -0.103   0.042  -2.40  
1989  0.159   0.124   1.28  -0.048   0.042  -1.13  
1990  0.274   0.119   2.29   0.020   0.043   0.47  
1991  0.288   0.111   2.59   0.041   0.042   0.95  
1993  0.163  0.098   1.66  0.002   0.042   0.01  
1994  0.174  0.084   2.05   0.022   0.037   0.60  
1996 0.023  0.074   0.30  -0.048   0.037  -1.28  
1998  0.117  0.073   1.59   0.037   0.040   0.92  
2000       0.000       .    .    -0.005   0.041  -0.14  

Variance Components   Variance se p value Variance se p value 
    Cohort    0.039** 0.016 0.00 
    Period    0.003# 0.002 0.08 
    Individual 3.135*** 0.032 0.00 3.136*** 0.032 0.00 
Model Fit       
   Deviance (DF)    77732.9 (7)     77714.4 (9)   
   AIC     77746.9     77732.4   

# indicates p<0.10* indicates p<.05; ** indicates p<.01; *** indicates p<.001 
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Table 4 Hausman Specification Tests Based on the Total Sample (N = 19,500; J = 
19; K = 15) and the Subsample (N = 3,687; J = 5; K = 5) 

 
 ----------Coefficients (N = 19,500) ---------- ----------Coefficients (N = 3,687) ---------- 
 
WORDSUM 

Fixed 
Effects 

Random 
Effects Difference Fixed 

Effects 
Random 
Effects Difference 

AGE 0.266 0.030 0.236 0.303 0.324 -0.021 
AGE2  -0.059 -0.065 0.006 -0.044 -0.020 -0.023 
EDUCATION 0.375 0.374 0.001 0.352 0.352 0.001 
FEMALE 0.241 0.242 -0.001 0.237 0.238 -0.001 
BLACK -1.046 -1.051 0.005 -1.049 -1.057 0.009 

Hausman Test 2c  df p value 2c  df p value 
 11.371 5 0.045 5.716 5 0.335 
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Figure 1 Estimated Cohort Effects, Period Effects, with 95% CIs, and Age Effects on GSS Verbal Test Scores 
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