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Abstract 

The statistical properties of covariate density defined, (CDD) mixtures of 

logistic regressions as a method of controlling for heterogeneity in infant 

mortality are explored.  Unlike finite mixtures of logistic regressions, the CDD 

approach is usually identified and is probably generalizable to most regression 

like procedures. CDD mixtures use the marginal density of a covariate (birth 

weight in this case) to assign probabalistic (latent) group membership to separate 

logistic probabilities.  The procedure appears to be unbiased, and consistent.  A 

procedure for estimating power is presented.  The method identifies significant 

heterogeneity, which influences birth weight specific infant mortality, and is 

consistent across populations.   This heterogeneity is the proximate cause of the 

“pediatric paradox”, i.e. the finding that low birth weight African American 

infants have lower infant mortality then European American infants.  All of the 

“paradox” occurs in one subpopulation.  Applications with additional covariates 

could identify the ultimate causes of this heterogeneity. 



 

 

 

Introduction 

Finite mixture models are increasingly used as a cluster analysis technique 

with the results  interpreted as heterogeneous subpopulations within a larger 

population, e.g. the effects of sex or age etc (McLachlan and Peel 2000).  Such 

interpretations are clearly relevant when the existence of subpopulations and the 

number of subpopulations are known a priori, e.g. sex in a heterosexual 

population.  However, finite mixture models have also been used to infer the 

existence of subpopulations, which are not known a priori.  For example Pearson 

(1894) in the earliest application of a two-component finite Gaussian mixture 

model argued that crabs from the Bay of Naples might consist of two subspecies.  

This interpretation of finite mixture models, particularly where the existence of 

subpopulations are not known a priori, suggests that finite mixture models might 

provide a useful method of statistically controlling for otherwise unobserved or 

unobservable heterogeneity in the context of various types of regression.  

However, finite mixtures of general linear models are not typically specified 

using a covariate density defined finite mixture submodel of this type. 

Finite mixtures of general linear models are traditionally specified 

assuming that the subpopulation structure is unknown and that support for the 

subpopulation structure is obtained from the dependent variable alone 

(McLachlan and Peel 2000; Wang 1994).  Typically these models are defined as 

the sum of several component-specific regressions weighted by an unknown 

mixing proportion, sometimes with the mixing proportion varying as a function 

of covariates.  These same covariates may also be incorporated in the component 

specific regressions.  Nevertheless, support for the mixing proportion is derived 

from the dependent variable, not the covariate.  Mixtures of Poisson regressions, 

and mixtures of logistic regressions, have been explored (McLachlan and Peel 

2000; Wang 1994; Wang et al. 1996).  Of these models, only mixtures of Poisson 

regressions are currently applied in the social sciences (see (Land 2001) ).  



 

 

Mixtures of Poisson regressions depend upon the repeated nature of the 

dependent variable (counts) for identification (Wang 1994).  However, mixtures 

of logistic regressions require binomial experiments often with may repetitions 

for identification, particularly if there are covariates (McLachlan and Peel 2000; 

Wang 1994).  Since experimental data are seldom available in the social sciences, 

it is unlikely that finite mixtures of logistic regressions are widely applicable.   

This paper explores the statistical properties of a mixture of logistic 

regressions, where the mixing of the logistic regressions is given by a finite 

Gaussian mixture model of a continuous variable, which in the case of logistic 

regression must be an independent variable.  This differs from the general 

definition of finite mixtures of logistic regressions in that the mixing parameter is 

no longer an unknown characterized by the dependent variable of the logistic 

regressions.  The mixing of the logistic regressions is instead defined by a finite 

Gaussian mixture model, which is the marginal distribution (density) of a 

continuous variable or vector of variables.  These same variables may also appear 

in the regression terms of the model as conventional covariates.  We call this a 

Covariate Density Defined (CDD) finite mixture of logistic regressions.  The 

advantage of the CDD methodology for mixtures of logistic regressions is that it 

can be applied to Bernoulli observations, that is binomial experiments are not 

required for the model to be identified.  The CDD finite mixtures approach is 

probably applicable to all densities encountered with GLMs, as well as, life 

history models, wherever a continuous variable’s density can be profitably 

described by a multi-component finite mixture model.  CDD finite mixtures of 

GLMs could be used, for example, to determine the characteristic differences 

between the two “subspecies” of crab implied by Pearson’s (1894) original 

application of Gaussian mixture models. 

Here the method is applied to the study of the relationship between 

human birth weight and infant mortality.  The fact that birth weight and 

gestational age distributions are consistently skewed is often interpreted as 



 

 

evidence that birth cohorts are composed of several heterogeneous 

subpopulations (Brimblecombe, Ashford and Fryer 1968; Fryer, Hunt and 

Simons 1984; Karn and Penrose 1951; Wilcox and Russell 1983b).  This view is 

supported statistically by applications of two component finite Gaussian mixture 

models (Fryer et al. 1984; Gage and Therriault 1998) and mixtures of a Gaussian 

with one or two non-parametric distributions (Umbach and Wilcox 1996; Wilcox 

and Russell 1983b) to describe human birth weight distributions.  Finite Gaussian 

mixture models have also been applied to gestational age (Gage 2000) with 

similar results to those obtained with birth weight.  Finally, Gage and others 

(Gage 2002a; Gage et al. submitted) have applied population based CDD finite 

mixtures of logistic regressions to determine if the components identified by the 

finite Gaussian mixture models might differ (i.e. are heterogeneous) with respect 

to mortality characteristics.  

The aim of this paper is to document the statistical properties of CDD - 

finite mixtures of logistic regressions as a method of modeling the relationship 

between birth weight and infant mortality. The specific aims are: a) to apply the 

model to 12 populations by sex and ethnicity born in New York State 1985-88 to 

establish the range of variation for human populations living in developed 

environments, b) to identify potential sources of estimation bias in the procedure, 

c) demonstrate that the parameter estimates are consistent, and d) examine Type 

I and Type II (1.0 - power) errors of the statistic.   Collectively these aims provide 

a context for interpreting the important characteristics of the relationship 

between birth weight and infant mortality. 

The Model 

 Gage et al. (submitted) define CDD - finite mixtures of logistic regressions 

for the Gaussian two-subpopulation case as the joint density of birth weight and 

occurrence of death: 

f ((x, y);β,θ) = f (y | x;β,θ) f (x;θ)                                 (1) 

The birth weight density, f (x;θ), is given by; 



 

 

f (x;θ = (θ1,θ2,π)) = πN(x,θ1 = (µ1,σ1
2)) + (1−π)N(x;θ2 = (µ2,σ2

2))          ( 2)  

 

with  π defined as the proportion of births belonging to the Gaussian density 

labeled 1, (the mixing proportion), and for i=1 to 2, N(x;θi = (µi,σ i
2)) being 

Gaussian densities with mean µi  and variance σi
2 truncated at 0.0    

The probability of death conditioned on birth weight is given by: 

f (y =1 | x;β = (β(1),β(2)),θ) = q(x;θ)P(x;β(1)) + (1−q(x;θ))P(x;β(2))       ( 3) 

where an infant of birth weight x in the ith subpopulation has probability of 

dying given in quadratic logistic form: 

P(x;β i) = eai +bi x+ci x2

(1+ eai +bi x+ci x 2

)
                    (4) 

and q(x;θ)  is the conditional probability that an infant of birth weight x belongs 

to subpopulation 1.  The model’s birth weight density form determines that: 

q(x;θ) = πN(x;θ1)
(πN(x;θ1) + (1−π)N(x;θ2)) .                        (5 ) 

The mixing proportion has been transformed to  

 

which transforms the 0.0 and 1.0 bounds on π to minus and plus infinity 

respectively.  Subpopulation-and-birth-weight-specific infant mortality is 

assumed to be U-shaped, hence the quadratic assumption in equation 4.  This 

quadratic form is the parsimonious parameterization of infant mortality in the 

homogeneous case (Fryer et al. 1984).  Altogether there are 11 parameters, 5 

defining the mixture, and 6 defining subpopulation-specific mortalities (Table 1).   

Table 1 about here. 

The CDD-finite mixture of logistic regressions is identified when the finite 

mixture model, and the individual logistic regressions are identified.  In 

particular it is noted that equation 1 shows the joint density as the product of the 

marginal birth weight density and a second factor, which is a mixture of logistic 

ρ = logit(π)



 

 

regressions.  The mixture birth weight density is identifiable up to assigning 

which Gaussian density in the mixture model is called subpopulation 1 

(McLachlan and Peel 2000).  We have followed the convention of assigning 

subpopulation 1 to the subpopulation accounting for the majority of births (Gage 

2002b).  For notational convenience this subpopulation is subscripted p, and 

called the primary subpopulation, and the less numerous subpopulation is 

subscripted s, and referred to as the secondary subpopulation.  Further the 

logistic terms are identified if the data matrix is full rank.  The CDD-finite 

mixtures of logistic regressions differs from the usual definition of a finite 

mixture model of logistic regressions, which are not identifiable when the 

observations are Bernoulli (Wang 1994) (McLachlan and Peel 2000).  The 

difference is that the traditional model defines the mixture as an unknown 

parameter, where as in the CDD-finite mixtures of logistic regression the mixture 

is not a parameter, but is a function of the components of the identifiable 

continuous birth weight mixture model.  Thus the CDD-finite mixtures of logistic 

regression is likely to be applicable in many situations where the traditional model is not. 

There are several important but unresolved problems with respect to finite 

mixture models, choice of parametric distribution (e.g. Gaussian versus log 

Gaussian etc), and statistically testing the number of components in a mixture.  It 

is likely that these two issues interact, that is the statistically optimum number of 

components might depend on the assumed parametric densities of the 

underlying components.  Little work has considered alternative parametric 

component densities in the context of mixture models, however, see Gage (Gage 

2002b) for a study of this issue with respect to birth outcomes.  On the other hand 

the development of a statistical test for the number of components in a mixture 

has received considerable attention in the statistical literature.  Since hypotheses 

concerning the number of components occur on boundaries, the standard 

likelihood ratio criterion is not appropriate.  The best procedure for testing 

significance is the bootstrap method suggested by McLachlan (1987).  Given the 



 

 

increasing popularity of finite mixture models as a method of cluster analysis, 

developing a simple statistical test for the number of components is an active 

area of research (see (McLachlan and Peel 2000) for a review).  However, with 

respect to birth outcomes, previous research using bootstrap methods (Gage 

2003), less rigorous penalized likelihood procedures (Gage and Therriault 1998), 

and theoretical arguments (Gage 2003) all suggest that birth cohorts are 

composed of at least two Gaussian components.  

Further, from the point of view of covariate density defined mixtures of 

logistic regression the important new issue is whether the covariate defined 

densities provide useful information concerning heterogeneity in the dependent 

variable. Hence the hypothesis tests examined here question whether the 

dynamics of the dependent variable differ between the components, i.e., that is 

the null hypothesis ap=as, bp=bs and cp=cs given that there are two Gaussian 

components.  In fact it is not necessary that the finite mixture model represent 

true underlying subpopulation structure.  Many arbitrary groupings of 

individuals have proven useful in practical applications.  Within the birth 

outcomes literature the concept of “low birth weight” is a classic example.  It is 

preferable, however, that the covariate defined densities be theoretically 

interpretable and approximate the true subpopulation structure.   

 

Data and Methods 

Data Sets 

The empirical birth outcomes data employed here consists of  births to six 

ethnic groups by sex born in New York State over the period 1985 to 1988 (Table 

2).  Births from inter-ethnic unions, with missing birth weights, and multiple 

births are excluded.  The data for all ethnic groups are analyzed for the four-year 

period.  Due to their comparatively large sample sizes, the European American 

birth cohorts are also analyzed disaggregated by year.  Sample sizes vary from 

about 6000 in the case of Asian Americans to over 270,000 in the case of 



 

 

European Americans over the four-year period.  Missing birth weights do not 

exceed 3/1000 in any of the populations, however, missing birth weights are 

least common in Asian and African Americans and most common in European 

American births.   

Table 2 about here 

Data for simulation studies are generated using the parameter estimates 

for two observed birth cohorts, that is African American females and European 

American males, and from 1000 simulated sets of parameters.  The 1000 

simulated parameter sets are obtained by randomly choosing parameters with a 

uniform distribution across the range of the observed parameter sets, that is, the 

observed cohorts listed in Table 2.  However, the Asian and African American 

Hispanic parameter estimates are excluded from the range since these 

populations are represented by small sample sizes and may incorporate 

excessive errors.  The covariance structure among the 11 parameters is not 

considered when generating the 1000 parameter sets.  Consequently, these 

parameter sets can and do represent model dynamics well outside the range of 

variation observed in the birth cohorts listed in Table 2.  Each test based on an 

observed parameter set represents the statistical behavior of the model at a single 

point in the 11 dimensional parameter space (based on 1000 replicates), while 

tests based on the 1000 randomly selected parameter sets incorporated 1 replicate 

at each point and refer to an average statistical behavior across a broad range of 

conditions.    

In all cases, simulated birth cohorts are generated randomly from 

equation 1 based on the parameter values.  Each simulation trial consists of 

generating a cohort of births randomly from a set of mixture model parameters. 

The probability of dying is then generated for each simulated birth based on 

birth weight, subpopulation membership, and the mortality parameters.  Deaths 

to individuals are assigned by generating a random number in the range 0.0 to 



 

 

1.0 from a uniform distribution.  These simulated birth cohorts are then analyzed 

using the same fitting procedures used to analyze the observed birth cohorts. 

Parameter Estimation 

The model is fitted using the methods of maximum likelihood with 

minimization algorithms from the Splus (ms) (Bates and Chambers 1992) and R 

(nls) (Ihaka and Gentleman 1996) statistical libraries.  For each birth cohort 

several different models are fitted in succession.  First a five parameter, two 

component Gaussian mixture model is fitted to the birth weight distribution.  

Second a standard homogenous logistic regression is fitted to infant mortality 

parameterized as a second-degree polynomial of birth weight (Fryer et al. 1984).  

Third, the population-based mixture of logistic probabilities is fitted to infant 

mortality where mortality in each component (subpopulation) is parameterized 

as a separate second-degree polynomial of birth weight.  In this case, the five 

Gaussian mixture model parameters are fixed at the values obtained in step 1, 

and only the six logistic parameters are allowed to float.  Finally, we fit the full 

model allowing all five mixture parameters and six logistic mortality parameters 

to float.  The parameter estimates from step 1 and step 3 are used as starting 

values for the final fitting procedure.  We have found that the step 1 and step 3 

estimates (a two-stage procedure) are usually very similar to estimates obtained 

from the full model.  However, only the full procedure provides true maximum 

likelihood estimates.   

Confidence Intervals 

Bias corrected confidence intervals for the parameter estimates, the birth 

weight specific mixture densities, and the birth weight specific mortality rates are 

estimated with bootstraps (Staude and Sheather 1990).  For each estimate, two 

bootstraps of 100 iterations each are carried out by sampling with replacement 

from the observed data set a sample the same size as the observed data set.  The 

bootstrap 95 percentile confidence limits are obtained from the first bootstrap set.  

Bias is estimated as the difference between the mean of the second bootstrap set 



 

 

and the estimate obtained from the observed data set.  The confidence limits are 

corrected for bias by adding the bootstrap estimate of bias to the upper and 

lower confidence limits.  Classical confidence intervals for the parameter 

estimates are also computed from the Hessian using R (Ihaka and Gentleman 1996) 

for comparison with the bootstrap results. 

Statistical Properties of the Parameter Estimates.  

Simulation studies are used to determine if the parameter estimates are 

asymptotically unbiased and consistent.  Three test cases are employed; the 

parameter estimates for the African American females, the European American 

males, and the sample of 1000 simulated parameter sets.  In the case of the 

observed parameter sets 1000 birth cohorts at sample sizes of 25,000, 50,000 and 

100,000 are randomly generated from the known parameters estimates, and then 

analyzed using the procedures presented above in an attempt to recover the 

parameters.  In the case of the 1000 randomly generated parameter sets the 

procedures are the same except that only one birth cohort is generated for each of 

the 1000 simulated parameter sets.  Note that the parameters generating the data 

differ for each trial, where as this is not the case for trials on the observed birth 

cohorts.  

Bias is defined as the difference between the mean of the results obtained 

from the simulated cohorts and the parameters generating the cohort.  Significant 

bias is identified by a series of t-test.   If the mean of the 1000 sets of parameter 

estimates can not be statistically distinguished from the generating parameters, 

the method is considered to provide unbiased estimates.  

An estimator is considered consistent if the mean square error of the 

estimates declines to 0.0 as sample size increases to infinity. We present the 

decline in mean square error of the parameters with respect to sample size, for 

samples of 25,000, 50,000, and 100,000 using the three standard test cases.  In 

small data sets both observed (see African American Hispanic females below) 

and simulated, a subpopulation and birth weight-specific mortality curve can be 



 

 

inverted, that is, rather than a U-shaped mortality curve with a minimum 

mortality within the range of the data there is an n-shaped mortality curve for 

one of the subpopulations with a maximum mortality.  We refer to this 

phenomenon as a “flip” in the mortality curve.  From a biological point of view 

U-shaped mortality is expected for a quantitative trait such as birth weight, that 

is minimum mortality is expected to occur close to the mean of the quantitative 

trait and higher mortality at very low and very high birth weights.  

Consequently, n-shaped mortality (a “flip”) is not biologically reasonable.  It 

implies lower mortality at the extremes of the birth weight distribution.   In any 

event, this inversion has a large impact on the parameter estimates and hence on 

the mean square error of the parameter estimates, although the effects on the 

predicted birth weight specific mortality are generally very small within the 

range of observed data.  Consequently the decline in the frequency of “flips” and 

the decline in the mean squared error excluding “flips” are presented separately.  

In addition we have determined if “flips” are more likely in some regions of the 

11 dimensional parameter space than others, using the sample of 1000 simulated 

parameter sets.  In this case 50 replicates at each of the 1000 simulated parameter 

sets are generated for the 25,000 cohort size.  A relatively small sample size is 

used because flips are common only at small sample sizes.  The probability of 

flipping at each of the 1000 points in the 11 dimensional parameter space is then 

modeled using standard logistic regression.  The dependent variable is the 

flipping phenomena.  The independent variables are the values of the generating 

parameters. 

Hypothesis Testing 

Simulation studies are used to examine the use of the standard likelihood 

ratio criterion for hypothesis testing.  Two aspects of hypothesis testing are 

considered; a) type I error, defined as the probability of rejecting the null 

hypothesis of homogeneity across components when it is true, and b) power, or 

1.0 - type II error, defined as the probability of rejecting the null hypothesis of 



 

 

homogeneous mortality when mortality differs among the subpopulations.  

These hypotheses do not include the issue of the number of components in the 

mixture, since it compares a two-component mixture model with a single logistic 

mortality model (ap=as, bp=bs, cp=cs), to a two-component mixture model with 

separate logistic mortality on each component (equation 1).  Since this does not 

include a test concerning the number of components (a boundry condition), the 

likelihood ratio criterion is asymptotically chi square (df=3) and should provide 

accurate type I errors.  However, since practical applications are conducted with 

finite sample sizes, potential questions arise concerning the behavior of the 

likelihood ratio criterion when π is close to 1.0 the boundry, as well as, the power 

of an application.   

An analysis of type I error similar to that for power described below 

indicates that the likelihood ratio criterion is generally chi-square.  Explorations 

with various sample sizes and values of π including values as close to 1.0 as 0.995 

remain chi-square.  There is no suggestion that the likelihood ratio criterion  

increasingly deviates from chi-square (df=3) at small sample sizes and when π 

approaches 1.0.  These results are available from the corresponding author (tbg), 

but are not reported further here since we could not find any conditions under 

which the likelihood ratio criterion failed. 

Power is modeled using 10 of the observed, birth cohorts in Table 2 and 

the model validated against the results obtained with African American females 

and European American males.  African American Hispanic females are omitted 

due to a “flip” in a mortality curve, (see below).  African American female and 

European American males were excluded since they are used to validate the 

model. The 1000 simulated parameter sets is not used for this purpose because 

preliminary analysis indicated that power is close to 100% in these parameter 

sets except in a very small proportion of the 11 dimensional parameter space 

where the observed population parameter estimates are located.  In the 10 

observed cases 50 simulated cohorts of 12,500, 25,000, 50,000, and 100,000 are 



 

 

generated and power (the dependent variable) was estimated by dividing the 

number of times the model correctly rejected homogeneous mortality by 50.  The 

independent variables were chosen based on the theoretical likelihood that they 

might influence power and the about which an investigator might a priori be 

expected to have an opinion with respect to a particular data set.  These are: the 

area difference between the primary and secondary birth weight specific 

mortality curves1; crude death rates for both the primary and secondary 

distributions; the mixing proportion of the distributions; the difference in the 

primary and secondary distributions mean birth weights; an indicator of whether 

the two birth weight specific mortality curves crossed; and sample size.  The area 

difference, the crossing of mortality curves, and the separation between the birth 

weight distributions are all different aspects of the degree of heterogeneity 

between subpopulations.  Power should increase as heterogeneity increases.  The 

primary and secondary crude death rates, and the mixing proportion, as well as, 

sample size all influence the magnitude of the number of deaths to be modeled.  

Power should increase as the number of deaths observed increases.   

Power was also empirically estimated for the African American female 

and European American male test cases.  In these cases 100 data sets are 

generated at 12,000, 25,000, 50,000 and 100,000 sample sizes.  Power is estimated 

as the number of times the model correctly rejects homogeneous mortality  (the 

step 2 fit) divided by the number of trials, in this case 100.  These results are  

described and used to validate the model described above. 

 

Results 

The Observed Birth Cohorts 

The parameter estimates and confidence intervals obtained with the full 

model for all 18 populations examined are presented in Tables 3, (the mixture 

model parameters), 4 and 5, (the primary and secondary mortality parameters 

respectively).  With respect to the five Gaussian mixture model parameters, the 



 

 

primary component accounts for  87% to 94% of births with the secondary 

component accounting for the remainder .  The primary component consistently 

has a higher mean birth weight, 3200 to 3546 grams, and smaller standard 

deviation, 370 to 478 grams, compared to the secondary component.  The mean 

of the secondary component ranges from 2542 to 3179, while the standard 

deviation varies from 866 to 1158 grams.  As a consequence of the larger 

variance, the secondary distribution accounts for most births in both the lower 

and upper tails of the birth weight distribution (Figure 1).   

Table 3 about here 

Table 4 about here 

Table 5  about here 

Figure 1 about here  

The subpopulation and birth weight specific infant mortality rates indicate 

that infant mortality is characteristically U-shaped for both components (Table 5, 

and Figure 2).   There are several cases where mortality does not increase at the 

highest birth weights and mortality may be L-shaped rather than U-shaped, i.e., 

Asian American males and females both primary and secondary mortality, 

African American male secondary mortality and African American Hispanic 

male primary mortality.  In these cases the confidence intervals for the squared 

term of the primary mortality polynomial includes 0.0.  Nested analyses confirm 

that these parameters are not significant (Table 6).  There is one anomalous case, 

African American Hispanic females, in which primary mortality is estimated to 

be  n-shaped rather then U-shaped, as indicated by a positive linear (b1) and 

negative squared  (c1) term in the mortality polynomial (Figure 3).  The bootstrap 

confidence limits indicate that neither the intercept, linear or squared terms for 

the primary subpopulation are significantly different from 0.0 for this estimate 

(Table 4).  Nested analysis confirms that an L-shaped mortality model (c1 =0.0) is 

parsimonious for African American Hispanic females (Table 6).  Figure 4 shows 

mortality for African American Hispanic females based on this model (c1=0.0), 



 

 

which closely resembles Figure 3 at least over the range where the primary 

component dominates.   The restricted range of birth weights of the primary 

subpopulation explains why in the full model primary mortality can be n-shaped 

and still fit the observed mortality data well (Figures 3 and 4).   Thus none of the 

observed data supports an n-shaped birth weight-specific primary or secondary 

mortality curve.  In general, the birth weight specific infant mortality curves are 

U-shaped (or perhaps L-shaped) for all populations. 

Figure 2 about here  

Figure 3 about here 

Figure 4 about here 

Table 6 about here 

The bootstrapped standard errors of the parameter estimates (Tables 4 

and 5) indicate that n-shaped mortality is observed in some simulated samples of 

the Asian American populations of both sexes, the African American Hispanic 

male cohort and even the 1985 European American female cohort, in addition to 

the African Hispanic female cohort.  Of these cases nested analysis indicates that 

mortality is not heterogeneous in three, the Asian (male and female) and the 1985 

European (female) cohort (Table 6).  Some additional characteristics indicative of 

the level of heterogeneity in the observed cohorts are presented in Table 7. 

Table 7 about here 

Surprisingly, secondary infant mortality is generally lower at every birth 

weight compared to primary infant mortality (Figure 2)! Nevertheless, overall 

(crude) secondary infant mortality is higher then overall crude primary mortality 

usually by an order of magnitude (Table 7).  Thus this system represents an 

excellent example of Simpson’s paradox.  In two cases, the mortality curves do 

cross, that is, for Asian American females and African American Hispanic 

females (Figure 3 and 4, Table 7). As noted above, the Asian American female 

cohort can not reject the null hypothesis of homogeneity of mortality.  The cross 

remains for African American Hispanic females even after eliminating 



 

 

insignificant terms (Figure 4).  Both of these results are based on small 

population sizes and may be unreliable.   

As a result of the characteristic patterns of subpopulation and birth weight 

specific mortality and the dynamics of the mixture, total mortality, that is 

combined across both subpopulations, is not a simple U-shape (Figures 2, 3 and 

4).  In particular, there is a shoulder at about 2500 grams and often a second 

shoulder at 5500 grams  (Figures 2,3, 4).  The shoulders are due to the dynamics 

of the mixture and the differences between the mortality curves.  The shoulders 

occur at birth weights where transitions from predominately secondary births to 

predominately primary births and then back again to predominately secondary 

births take place.   

Bootstrapped confidence intervals on the mortality curves vary across 

birth weights (Figure 5).  The intervals tend to be larger where the shoulders 

occur, that is, where the transitions from predominately secondary to 

predominately primary occur.  The decrease in confidence in these regions is 

probably a result of the decreased classificatory power of the mixture model at 

birth weights where the mixture is approximately 50% primary and 50% 

secondary.   The relatively small number of births at heavier birth weights also 

contributes to the large confidence intervals at large birth weights.   As a result it 

is not clear if these upper shoulders are real or artifacts of the model specification 

(quadratic functions of birth weight). 

Figure 5 about here. 

The bootstrapped confidence intervals for the parameter estimates (Tables 

2 and 3) suggest that the Hessian can considerably underestimate the true 

confidence intervals.   The ratio of Hessian to bootstrapped confidence interval 

lengths for two cases, African American females and European American males, 

are presented in Table 8.  The mean ratio across all 11 parameters is 0.96 in the 

case of African American females but only 0.80 in the case of European American 

males.  The birth weight mixture model parameter standard errors estimated 



 

 

from the Hessian and the bootstrap are reasonably similar.  However, the 

mortality logistic regression parameter standard errors are considerably smaller 

when estimated from the Hessian.  These results suggest that the likelihood 

surface may not be well approximated as a quadratic at the solution.  The 

bootstrap confidence intervals are preferred, since they make no assumption 

about the curvature of the likelihood at its maximal value.    

Table 8 about here. 

The Statistical Properties of the Parameter Estimates 

The fitting procedure provides unbiased estimates of the parameter values 

at least with samples of 25,000 to 100,000 (Table 9).  In general, the estimated bias 

is small and/or declines with sample size.  None of the estimated biases 

approach statistical significance (the largest value of t is 0.63). 

Table 9 about here 

The mean square error of the parameter estimates exclusive of “flips” 

declines with sample size, indicating that the parameter estimates are consistent 

(Table 10). The mean square error of the estimates declines fastest for the African 

American female data and slowest for the 1000 simulated data sets.  Two of the 

comparisons for the simulated parameter sets do not decline; π. (25,000/50,000) 

and σ1 (50,000/100,000).  This is not surprising given that there are 66 

comparisons altogether.  Moreover, both of these cases decline across the 

25,000/100,000 comparison.  In general mean square error declines with sample 

size in all cases indicating the procedure is asymptotically consistent.   

Table 10 about here 

The results presented in Table 10 do not include cases in which the fits 

displayed n-shaped mortality.   These were simply omitted from the calculations.  

In all cases, the parameters generating these simulated data represent 

heterogeneous U-shaped mortality curves.  Nevertheless, n-shaped mortality 

curves were observed in the European American male  case and in the 1000 

simulated parameter sets (Table 11).  No cases of flips are observed with the 



 

 

African American female simulations at any sample size.  Clearly this problem 

diminishes as sample size increases.  Further the differences between the African 

American female and European American male results suggest that the 

frequency of “flips” varies across the 11 dimensional parameter space.  Inclusion 

of the n-shaped mortality results in Table 10 would simply make the decline in 

mean square error with sample size more dramatic.  Again the procedure 

appears to be asymptotically consistent. 

Table 11 about here 

To understand the variation in “flipping” across the 11 dimensional 

parameter space, 50 simulation trials are carried out for each of the 1000 

simulated data sets at the 25,000 cohort size.  This sample size was used because 

these issues are most extreme at smaller sample sizes.  The results were split into 

2 groups: n-shaped mortality in the primary subpopulation and flips in the 

secondary subpopulation.   The probability of flipping was modeled with logistic 

regression using the simulated data’s 11 generating parameters as the 

independent variables.  The logistic regression model for predicting flips in the 

primary subpopulation and birth weight specific mortality is presented in Table 

12.  The results suggest that all ll parameters significantly influence the 

probability of an n-shaped mortality curve, but the mortality parameters are the 

most influential.  In particular, as secondary mortality increases (positive 

coefficients) and primary mortality decreases (negative coefficients) the 

probability of a primary flip increases.  This suggests that as the two birth weight 

specific mortality curves come closer together (that is, lower heterogeneity) the 

primary subpopulations birth weight specific mortality curve is more likely to 

flip.  

Table 12 about here 

The logistic regression model for secondary flips is presented in Table 13.  

In this case, the variables that have the greatest influence on the probability of a 

secondary flip are the proportion of births attributed to the secondary 



 

 

distribution, the mean of the secondary distribution and all 3 secondary 

mortality coefficients.  This suggests that secondary flips are affected mostly by 

characteristics of the secondary distribution.  As the number of births in the 

secondary distribution decreases and/or secondary mortality decreases the 

probability of a secondary flip increases.  This suggests that the secondary 

flipping phenomenon is solely a sample size problem, i.e. the number of infant 

deaths.  

Table 13 about here 

Power 

Samples of 50,000 births appear to be necessary to insure powers of 80% to 

reject the homogeneous null hypothesis when it is false (Table 14).  For example, 

African American females require sample sizes of only 12,500, while European 

American males need sample sizes of at least 50,000 births to achieve 80% power.  

In both cases power approaches 100% for samples of 100,000.  Clearly, relatively 

large sample sizes are necessary, however, the characteristics of the population 

are also an important determinant of power. 

Table 14 about here 

To explore the characteristics that effect power, and to provide a method 

of estimating power for future applications we have estimated power for the ten 

remaining independent data sets described in Table 2 , excluding African 

American females, European American males and Hispanic African American 

females.  The Hispanic African American female cohort is eliminated due to the 

n-shaped primary mortality curve, which is theoretically anomalous and 

probably due to small sample size.  The empirical power estimates for these ten 

populations are consistent with the findings presented earlier concerning 

heterogeneity in mortality.   The null hypothesis of homogeneity could not be 

rejected in the cases of Asian females and males and European American females 

in 1985 (Table 6).  The estimates presented in Table 15 indicate that power is less 

then 50% in all three cases given the sample sizes in Table 2.  The covariates for 



 

 

the analysis of power, except for sample size, are all logically related to the 

apparent heterogeneity of the birth cohort and are presented in Table 7. 

Table 15 about here 

Logistic regression analysis of the data in Table 15 with the data in Table 7 

as covariates, suggest that in addition to sample size, power is a function of the 

heterogeneity between the subpopulations (Table 16).  Power increases as five of 

the covariates increase.  The most important factor is of course sample size.  A 

higher overall primary crude death rate also increases power.  But, the other 

measures of the magnitude of deaths modeled, secondary crude death rates and 

the mixing proportion do not appear to influence power.  On the other hand all 

of the indicators of heterogeneity influence power.  The area between the 

mortality curves1 is almost as important as sample size.  If the birth weight and 

subpopulation specific mortality curves cross, indicating different birth weight 

specific dynamics, power tends to increase. Similarly the difference in birth 

weight means, that is, the greater the separation between the subpopulation birth 

weight densities, increases power.  Thus increased heterogeneity in mortality, 

and birth weight density between the subpopulations is associated with greater 

power.  

Table 16 about here 

 Validation of this model using the estimates of power obtained with 

simulation techniques for African American females and European American 

males (Table 13), two cohorts excluded from the logistic regression sample, is 

presented in Table 17.  The African American female cohort has a greater area 

difference between the subpopulation specific mortality curves (by a factor of 

1.2), a greater difference in birth weight means (by a factor of 1.2) and a greater 

crude primary death rate (by a factor of 1.8) than did the European American 

male cohort (Table 7). The mortality curves did not cross in either data set 

(Figure 2).  As a result the predicted power for African American females is 

higher than for European American males.  This is consistent with the estimates 



 

 

of power for these same populations based on simulation trials.  In general the 

model does an excellent job predicting power for the African female and 

European male data sets.  Power is typically slightly underestimated making the 

result appropriately conservative. The notable exception is European American 

males at 100,000, which is over estimated.  In this case, however, the power 

estimate is above 90% using either prediction.   

Table 17 about here 

Discussion 

Perhaps one limitation of CDD – finite mixtures of logistic regressions in 

the context of analyzing infant mortality in low mortality populations is that 

relatively large sample sizes are required to reject the null hypothesis of 

homogeneity when it is incorrect.  At least in one case given above, samples 

greater than 50,000 are necessary to insure reasonable power.  This is partly 

because infant mortality is a relatively rare event, at least in the developed areas 

of the world such as New York State, and because the degree of heterogeneity 

between the subpopulations is not necessarily large both in terms of mortality 

and separation of birth weight densities.  On the other hand, sample sizes as 

small as 12,000 are sufficient in other cases with greater heterogeneity, such as 

African American females.  In any event in low mortality populations large data 

sets are generally available concerning birth outcomes.  Considerably smaller 

samples may be sufficient in high mortality populations where large data sets are 

harder to obtain.  A model for predicting power is provided to guide future 

investigations.   

In practical applications of CDD-finite mixtures of logistic regressions to 

birth outcomes data, the theoretical principles of maximum likelihood appear to 

apply.  Type I error does not appear to be problematic even when π approaches 

1.0, although the likelihood ratio criterion fails theoretically at the boundry, 

π=1.0.  Finely, the parameter estimates are asymptotically consistent and 

unbiased.   



 

 

The nested analysis and simulation studies both indicate that n-shaped 

mortality curves (“flips”) are a function of small samples and the limited range of 

primary subpopulation birth weights.  First, the analysis of the observed 

population that “flipped” is associated with non-significant parameter estimates.  

Flips do not occur with parsimonious models where non-significant parameters 

have been eliminated.  Second, simulation studies, where the mortality pattern is 

known to be U-shaped, also occasionally return an n-shaped pattern.  In all cases 

that “flip”, observed and simulated, the declining right side of an n-shaped 

second degree polynomial appears to fit marginally (but not significantly) better 

then a U-shaped model.  Finally, the “flips” are unlikely to confuse a 

knowledgeable investigator at least in applications to quantitative biological 

traits, since n-shaped mortality curves make no biological sense.  Thus there is 

good reason to believe that the n-shaped mortality pattern estimated for African 

American Hispanic females is a statistical artifact.  It is possible that the flipping 

behavior might be eliminated by an alternative specification of the 

subpopulation and birth weight specific mortality curves, substituting something 

less flexible than a second degree polynomial.  

Considering available sample sizes for the observed populations and 

power, the CDD finite mixture of logistic regressions model suggests that birth 

cohorts typically have the following characteristics: a) the birth cohort is 

composed of at least two subpopulations heterogeneous with respect to infant 

mortality, b) the primary subpopulation (accounting for the majority of infants) 

has a higher mean and lower standard deviation then the secondary 

subpopulation, as a result of the high standard deviation the secondary 

subpopulation accounts for the majority of births at both low and high birth 

weights, c) the secondary subpopulation is the population at highest overall risk, 

but the birth weight specific mortality of the secondary subpopulation is 

generally lower at most birth weights, d) both primary and secondary birth 

weight specific mortality is U or perhaps L shaped, and d) the birth weight 



 

 

specific total infant mortality curve has a shoulder around 2000 grams.  The 

observed populations that are exceptions to these characteristics all have very 

low statistical power.  These results are consistent with earlier results concerning 

birth weight distributions (Fryer et al. 1984; Gage and Therriault 1998) and infant 

mortality (Gage 2002a).   

It is hypothesized that the primary subpopulation represents a “normal” 

fetal development group, while the secondary subpopulation represents fetuses 

that have been disturbed or compromised during fetal development (Fryer et al. 

1984; Gage and Therriault 1998).  The lower birth weight specific infant mortality 

of the secondary subpopulation may be due to higher fetal losses to this group 

who are consequently more robust than births at the same birth weight in the 

primary subpopulation (Gage 2002a).  Further analysis and comparison of the 

African and European birth cohorts presented above indicate that the pediatric 

paradox, the observation that low birth weight African American births have 

lower mortality than low birth weight European American and presumably 

socially advantaged births(Gage et al. submitted), is entirely due to the 

secondary subpopulation.  African American primary births have higher birth 

weight specific mortality compared to European American primary births.  On 

the other hand, African American secondary births have lower birth weight 

specific mortality than European American secondary births (Gage et al. 

submitted) possibly as a result of higher fetal loss rates among African 

Americans.  Thus the lower mortality at low birth weights among African 

Americans might be due to higher levels of stress resulting in higher fetal losses 

in the disadvantaged population, resolving but not identifying the ultimate cause 

of the paradox (Gage et al. submitted).   

The CDD-finite mixtures of logistic regressions can be elaborated in a 

number of ways. First, other indicators of heterogeneity could be studied, for 

example, in the context of birth outcomes, gestational age (Gage 2000).  Second, 

multivariate mixtures can be substituted for univariate mixture models.  In the 



 

 

case of birth outcomes, a birth weight by gestational age mixture would be a 

reasonable extension (Gage 2003).  Third, finite mixture models need not be 

restricted to Gaussian mixture models.  Other parametric specifications could 

also be examined (Gage 2002b).  Fourth, the application is not necessarily limited 

to logistic regression, but could be generalized to other types of population based 

regression analysis as well.  Finally, covariates, can be introduced into the 

mixture and logistic terms of the model, e.g. in the context of birth outcomes, 

maternal age, parity or SES etc. could be introduced into the mixture or logistic 

models or both.  Covariates on the characteristics of the birth weight mixture 

model influence infant mortality indirectly through birth weight (Gage 2003).  

Additional covariates (other than birth weight) incorporated into the logistic 

probabilities influence infant mortality independently of birth weight (i.e. 

directly) and/or interact with birth weight.  In theory by placing the same 

covariate in the mixture and logistic terms the direct and indirect effects of a 

covariate on infant mortality can be disentangled, fully operationalizing the 

proximate determinants model of infant mortality (Eberstein 1989).  Further, the 

covariates could have differential and even opposite effects on the two 

subpopulations.   Thus conventional analyses assuming homogeneity of birth 

cohorts may underestimate or even completely overlook the effects of important 

covariates.  An analysis with covariates might elucidate the causes of the 

differences between African and European American birth weight distributions 

and infant mortality rates.  Conventional analyses have been unable to resolve 

these differences (Costa 2003; Wilcox and Russell 1990).  

CDD – finite mixtures of general linear models provide a new method of 

controlling for hidden heterogeneity.  It differs from other models of “hidden” 

heterogeneity (McLachlan and Peel 2000; Wang 1994) (GLMs) and (Heckman and 

Singer 1982; Vaupel, Manton and Stallard 1979) (failure time models), which the 

mixing parameter is an unknown.  CDD – finite mixtures of general linear 

models, on the other hand, attempt to obtain information about “hidden” 



 

 

heterogeneity from a finite mixture model.  Unlike the previous methods, CDD 

base models cannot correct for sources of heterogeneity that are not reflected in 

the chosen covariates marginal distribution.  The disadvantage of this approach 

is that some unmeasured heterogeneity may remain in the analysis.  The 

advantage is that the causes and consequences of the heterogeneity identified can 

be explored.  For example, in the birth weight example presented above, the 

finding that there are two subpopulations in the birth cohort immediately raises 

several questions, do these subpopulations differ with respect to mortality? What 

are the characteristics of the two subpopulations? etc.  For example, the CDD-

finite mixtures of GLMS could be used to examine the hypothesis that the 

secondary subpopulation is a product of disturbed fetal development by 

determining if adverse conditions of pregnancy are associated with the 

secondary subpopulation, etc.  On the other hand, with the generic models the 

sources of “hidden” heterogeneity are controlled for but remain hidden.  Thus 

the CDD finite mixtures of general linear models is less general, but potentially 

more informative because it naturally leads the investigator to ask questions 

concerning the source of the heterogeneity, as well as, providing a methodology 

for identifying the sources.  It will be useful even with finite mixtures of Poisson 

regressions where the generic approach is also possible.  As a result, currently 

“hidden” heterogeneity may eventually become directly observable and 

understood. 

The CDD approach has applicability wherever finite mixture models are 

useful. The utility of the method for studying infant mortality with the addition 

of covariates that are “proximate determinants model of infant mortality” 

(Eberstein 1989; Menken 1987), is clear based on the results presented above.  The 

same sort of analysis is relevant to examination of the fetal origins hypothesis, 

i.e., that conditions, (disturbances) during fetal development may cause adult 

sequelae, for example, the association of low birth weight with heart disease in 

adults (Godfrey and Barker 2000).  Further, given the explosive growth of finite 



 

 

mixture models as a method of cluster analysis (McLachlan and Basford 1988; 

McLachlan and Peel 2000), CDD finite mixtures are likely to identify potentially 

heterogeneous components in a broad range of variables and hence be useful in a 

broad range of applications.  The covariate density defined finite mixture method 

could potentially double the information available for analyses, since the same 

covariate can be used to identify heterogeneity “hidden” by its density 

distribution, as well as, serve as a conventional covariate measuring the level of 

the variable. 

Conclusions 

Maximum likelihood estimates of Covariate Density Defined Finite 

Mixtures of Logistic Regressions applied to birth weight and infant mortality are 

asymptotically consistent and unbiased.  In low mortality settings (such as New 

York State) relatively large sample sizes (>50,000) are needed to insure sufficient 

power.  Fortunately, in low mortality settings large samples are readily available.  

Considerably smaller sample sizes may be sufficient in high mortality settings, 

where large data sets may not be available. 

The analyses indicate that the relationship between birth weight and 

infant mortality has the following characteristics, a) birth cohorts are composed 

of two or more subpopulations, b) the majority subpopulation has a higher mean 

and lower variance compared to the minority subpopulation, and so the minority 

subpopulation accounts for most births at both extremes of the birth weight 

distribution, c) the minority subpopulation has higher crude death rates but 

lower birth weight specific mortality at every birth weight compared to the 

majority subpopulation, and d) total birth weight specific infant mortality is not a 

simple U-shape but has a shoulder at around 2000 grams and perhaps a second 

at higher birth weights..  

Finally, covariate density defined finite mixtures of logistic regressions is 

one method of correcting for sources of “hidden” heterogeneity.  Given the 

increasing use of finite mixture modeling for cluster analysis, it is likely that 



 

 

potentially “hidden” heterogeneity may be identifiable from the marginal 

distribution of a wide variety of covariates. This could double the information 

available to these analyses, since the covariates may also be incorporated as 

conventional covariates.  Consequently, population based parametric mixtures of 

logistic regressions, as well as, parametric mixtures of other types of regression 

should have broad statistical applicability. 

 

 

Footnotes 

 

1. Area difference between the primary and secondary birth weight specified 

mortality curves (shown in Figure 2) is a relative measure.  In this study the 

area differences are measured between 50 and 6000 grams and mortality is a 

rate per 1,000 births.  This standardizes the measurements to have a 

maximum value of 5,950,000.  The mean value of the 13 independent data sets 

used in the power analyses is 1,072,175 with a standard deviation of 

222,380.6.  Estimates for each of the observed birth cohorts are presented in 

Table 5a. 
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Figure Captions 

 

Figure 1.  The mixture model fitted to African American female births (1985-88).  

The results are qualitatively similar for the other populations examined.  The 

solid line represents the total density, while the short dashed line is the density 

of subpopulation 1 and the long short dashed line is the density of subpopulation 

2.  The rug plot displays the density of the original data. 

 

Figure 2.  The mortality model fitted to African American female births (1985-88).  

The results are similar for the other populations (see text for qualifications).  The 

solid line represents the total death rate, while the short dashed line is the death 

rate of subpopulation 1 and the long short dashed line is the death rate of 

subpopulation 2.  The rug plot displays the density of births. 

 

Figure 3. The full mortality model fitted to African American Hispanic female 

births (1985-88).  The solid line represents the total death rate, while the short 

dashed line is the death rate of subpopulation 1 and the long short dashed line is 

the death rate of subpopulation 2.  The n-shaped birth weight specific mortality 

cure for subpopulation 1 is biologically unrealistic. 

 

Figure 4. A reduced mortality model (c1=0.0) fitted to African American 

Hispanic female births (1985-88).  The solid line represents the total death rate, 

while the short dashed line is the death rate of subpopulation 1 and the long 

short dashed line is the death rate of subpopulation 2.  Subpopulation 1 mortality 

declines linearly with birth weight (the graph shows this on a log scale) and is 

biologically more realistic, although in general quantitative traits are expected to 

display high mortality at both high and low levels of the trait. 

 



 

 

Figure 5. (actually 7 in ppt). The mortality model with 95% confidence intervals. 

The solid line represents the total death rate (same as Figure 2).  The dashed lines 

represent the 95% confidence limits for the total death rate.  The rug plot displays 

the density of all births. 

 

 



 

 

 
Table 1 Definitions of the model parameters 
 
Symbol Definition 
          Mixture Parameters 
π Mixing proportion (% primary subpopulation) 

µ1 Mean primary subpopulation 

µ2 Mean secondary subpopulation 

σ1 Standard Deviation  primary subpopulation 

σ2 Standard Deviation secondary subpopulation 
           Mortality Parameters  (a, b, and c are coefficients of a second degree polynomial) 
a1 Constant primary subpopulation 

b1 Linear term primary subpopulation 

c1 Squared term primary subpopulation 

a2 Constant term secondary subpopulation 

b2 Linear term secondary subpopulation 

c2 Squared term secondary subpopulation 

 
 



 

 

Table 2 Summary Statistics for the Observed NYS Birth Cohorts 1985-88 
 

 
Birth Cohort Births NA* Mean

&
StDev.& Skewness Deaths Mortality*

As. Am. f.^ 6118 0.65 3220 449 0.51 27 4.41
As Am. m.^ 6656 0.15 3316 460 0.37 27 4.06
His. Af. Am. f.^ 7395 1.89 3216 579 0.87 68 9.20
His.Af. Am. m.^ 7725 2.72 3338 598 0.85 96 12.43
Af. Am. f. 54968 1.27 3119 611 0.88 690 12.55
Af. Am. m. 57449 1.64 3240 627 0.96 848 14.76
His. Am. f. 68708 2.42 3263 543 0.72 479 6.97
His. Am. m. 72411 2.51 3376 578 0.67 586 8.09
Eur Am. f. 255516 1.99 3375 524 0.55 1294 5.06

Eur Am. f. 1985 62863 1.30 3369 519 0.54 332 5.28
Eur. Am. f. 1986 62379 1.73 3376 523 0.54 314 5.03
Eur. Am. f. 1987 63635 2.44 3375 524 0.59 296 4.65
Eur. Am f. 1988 66639 2.45 3379 529 0.52 352 5.28

Eur. Am. m. 270189 2.09 3507 557 0.61 1734 6.42
Eur Am. m. 1985 67005 1.42 3502 554 0.59 464 6.92
Eur. Am. m. 1986 65733 1.83 3510 555 0.59 417 6.34
Eur. Am. m. 1987 66835 2.39 3509 557 0.64 407 6.09
Eur. Am. m. 1988 70616 2.70 3509 563 0.61 446 6.32

As.=Asian, Af. =African, His. = Hispanic, Eur.= European, Am. = American, f. = female, and m. = 
male. 
NA = births missing birth weight data 
* = rate / 1000 births 
& = birth weight 
^=excluded from some analyses due to small numbers of births and deaths 



 

 

Table 3 The Mixture Parameter Estimates and 95% Confidence Limits 
 
Birth Cohort π  (LCL – 

UCL) 
µ1  (LCL – 

UCL) 
µ2  (LCL – 

UCL) 
σ1  (LCL – 

UCL) 
σ2  (LCL – 

UCL) 
As. Am. f. 0.90  (0.86 - 0.94) 3236  (3222 – 

3248) 
3065  (2888 -  

3175) 
370  (355 – 

384) 
888  (776 – 

1014) 
As Am. m. 0.90  (0.81 - 0.94) 3332  (3318 – 

3343) 
3179  (3057 – 

3301) 
386  (363 – 

401) 
866  (729 – 

952) 
His. Af. Am. 
f. 

0.88  (0.85 - 0.91) 3283  (3271 – 
3292) 

2693  (2531 – 
2850) 

442  (429 – 
458) 

1077  (1003 – 
1153) 

His.Af. Am. 
m. 

0.91  (0.88 - 0.93) 3400  (3387 – 
3412) 

2706  (2481 – 
2871) 

473  (458 – 
487) 

1163  (1073 – 
1222) 

Af. Am. f. 0.87  (0.86 - 0.88) 3200  (3196 – 
3205) 

2542  (2478 – 
2594) 

455  (449 – 
461) 

1110  (1086 – 
1140) 

Af. Am. m. 0.88  (0.87 - 0.89) 3328   (3323 
– 3332) 

2577  (2511 – 
2626) 

465  (460 – 
470) 

1138  (1112 – 
1162) 

His. Am. f. 0.93  (0.92 - 0.93) 3307  (3302 – 
3311) 

2690  (2634 – 
2752) 

451  (447 – 
455) 

1079  (1044 – 
1110) 

His. Am. m. 0.90  (0.89 - 0.91) 3429  (3424 – 
3433) 

2906  (2845 – 
2971) 

467  (462 – 
473) 

1074  (1041 – 
1108) 

Eur Am. f. 0.94  (0.94 - 0.95) 3403  (3401 – 
3404) 

2916  (2870 – 
2948) 

451  (450 – 
454) 

1120  (1096 – 
1142) 

Eur Am. f. 
1985 

0.94  (0.94 - 0.95) 3396  (3392 – 
3400) 

2908  (2827 – 
2989) 

449  (444 – 
454) 

1115  (1063 – 
1164) 

Eur. Am. f. 
1986 

0.94  (0.93 - 0.95) 3402  (3399 – 
3406) 

2946  (2877 – 
3029) 

452  (446 – 
455) 

1115  (1057 – 
1163) 

Eur. Am. f. 
1987 

0.94 (0.94 - 0.95) 3405  (3401 – 
3408) 

2864  (2784 – 
2928) 

453  (450 – 
457) 

1115  (1078 – 
1160) 

Eur. Am f. 
1988 

0.94  (0.93 - 0.95) 3407  (3404 – 
3412) 

2939  (2875 – 
3003) 

452  (449 – 
455) 

1131  (1091 – 
1185) 

Eur. Am. m. 0.94  (0.93 - 0.94) 3543  (3541 – 
3545) 

2988  (2952 – 
3028) 

476  (474 – 
478) 

1129  (1108 – 
1151) 

Eur Am. 
m. 1985 

0.93  (0.92 - 0.94) 3537  (3532 – 
3540) 

3041  (2963 – 
3106) 

472  (467 – 
476) 

1094  (1056 – 
1134) 

Eur. Am. 
m. 1986 

0.93  (0.93 - 0.94) 3545  (3541 – 
3548) 

3005  (2929 – 
3073) 

476  (471 – 
480) 

1118  (1071 – 
1158) 

Eur. Am. 
m. 1987 

0.94  (0.93 - 0.95) 3546  (3542 – 
3550) 

2907  (2838 – 
2983) 

478  (474 – 
482) 

1141  (1109 – 
1187) 

Eur. Am. 
m. 1988 

0.93  (0.93 - 0.94) 3544  (3540 – 
3548) 

2992  (2906 – 
3051) 

478  (473 – 
482) 

1159  (1114 – 
1206) 

As.=Asian, Af. =African, His. = Hispanic, Eur.= European, Am. = American, f. = female, and m. = 
male. 
LCL=lower 95% confidence limit, UCL=upper 95% confidence limit 

  
 



 

 

Table 4.  The Mortality Parameter Estimates and 95% Confidence Limits, Primary Subpopulation 
 
 

Birth Cohort a1  (LCL   UCL) b1  (LCL   UCL) c1  (LCL   UCL) 

As. Am. f. 11.0  (-535.8   22.8)n -0.011  (-0.018   0.356)ns 1.70e-6   (-6.16e-5 
2.77e-6)ns 

As Am. m. 16.1  (-8124.1   
25.0)ns 

-0.012   (-0.018   
3.886)ns 

1.67e-6   (-6.37e-4   
2.46e-6)ns 

His. Af. Am. f. -2.4  (-42.8   
8.7)ns 

0.001   (-0.007   0.031)ns -5.18e-7   (-5.32e-6   
7.00e-7)ns 

His.Af. Am. m. 16.4  (-7.8   
20.8)ns 

-0.012   (-0.015   
0.001)ns 

1.72e-6   (-2.45e-7   
2.13e-6)ns 

Af. Am. f. 9.9   (6.5   13.3) -0.009   (-0.011   -0.007) 1.19e-6   (8.66e-7   
1.53e-6) 

Af. Am. m. 9.7   (7.2   11.7) -0.008   (-0.010   -0.007) 1.12e-6   (8.68e-7   
1.31e-6) 

His. Am. f. 10.5   (6.7   
13.0) 

-0.009   (-0.011   -0.007) 1.25e-6   (8.29e-7   
1.50e-6) 

His. Am. m. 12.7   (7.8   
14.8) 

-0.010   (-0.011   -0.007) 1.33e-6   (8.67e-7   
1.51e-6) 

Eur Am. f. 13.7   (11.5   
15.3) 

-0.011   (-0.012   -0.010) 1.47e-6  (1.27e-6   
1.63e-6) 

Eur Am. f. 
1985 

10.5   (-16.0  
14.2)ns 

-0.009   (-0.011   0.007) 

ns 
1.19e-6   (-1.27e-6   

1.57e-6) ns 
Eur. Am. f. 

1986 
14.1   (9.4   
16.1) 

-0.011   (-0.013   -0.008) 1.53e-6   (1.08e-6   
1.75e-6) 

Eur. Am. f. 
1987 

14.1   (7.2   
17.5) 

-0.011   (-0.013   -0.008) 1.50e-6   (9.77e-7   
1.80e-6) 

Eur. Am f. 
1988 

14.7   (10.4   
17.1) 

-0.011  (-0.013   -0.009) 1.55e-6   (1.06e-6   
1.78e-6) 

Eur. Am. m. 11.7   (8.9   
13.6) 

-0.009   (-0.010   -0.008) 1.18e-6   (9.37e-7   
1.33e-6) 

Eur Am. m. 
1985 

12.9   (9.4   
15.8) 

-0.010   (-0.012   -0.008) 1.29e-6   (1.01e-6   
1.55e-6) 

Eur. Am. m. 
1986 

11.2   (3.6   
14.3) 

-0.009   (-0.011   -0.005) 1.09e-6   (4.82e-7   
1.33e-6) 

Eur. Am. m. 
1987 

10.6   (5.9   
14.3) 

-0.009   (-0.011   -0.006) 1.09e-6   (6.78e-7   
1.41e-6) 

Eur. Am. m. 
1988 

11.0   (2.5   
14.3) 

-0.009   (-0.011   -0.004) 1.15e-6   (5.69e-7   
1.41e-6) 

As.=Asian, Af. =African, His. = Hispanic, Eur.= European, Am. = American, f. = female, and m. = 
male. 
LCL=lower 95% confidence limit, UCL=upper 95% confidence limit 
ns = not significantly different from zero based on the bootstrapped confidence limits 

 



 

 

 
Table 5.  The Mortality Parameter Estimates and 95% Confidence Limits, Secondary 
Subpopulation 

 
 
 

Birth Cohort a2   (LCL   UCL) b2   (LCL   UCL) c2   (LCL   UCL) 
As. Am. f. 2.67   (-6.20   

7.71)ns 
-0.004   (-0.011   

0.008)ns 
4.64e-7   (-6.32e-6   

1.48e-6)ns 
As Am. m. 5.30   (-3.59  

388.78)ns 
-0.007   (-0.398   

0.025)ns 
7.82e-7   (-2.07e-5  

4.17e-5)ns 
His. Af. Am. f. 3.96   (0.89   5.65) -0.006   (-0.008   

0.001)ns 
8.65e-7   (-2.72e-6   

1.23e-6) ns 
His.Af. Am. m. 4.66   (2.67   7.88) -0.007   (-0.011   -

0.004) 
9.19e-7   (4.84e-7   

1.56e-6) 
Af. Am. f. 3.84   (3.29   4.49) -0.006   (-0.007   -

0.005) 
8.98e-7   (7.29e-7   

1.08e-6) 
Af. Am. m. 4.42   (3.70   5.07) -0.006   (-0.007   -

0.005) 
7.11e-7   (-1.30e-7   

8.30e-7)ns 
His. Am. f. 3.87   (3.02   4.82) -0.006   (-0.007  -

0.005) 
8.64e-7   (5.41e-7   

1.02e-6) 
His. Am. m. 3.70   (2.93   4.64) -0.005   (-0.006   -

0.004) 
5.73e-7   (4.56e-7   

7.35e-7) 
Eur Am. f. 3.39   (2.95   3.86) -0.005   (-0.006   -

0.005) 
5.46e-7   (4.87e-7   

6.30e-7) 
Eur Am. f. 1985 3.15   (1.80   4.56) -0.005   (-0.007  -

0.003) 
5.15e-7   (3.36e-7   

8.13e-7) 
Eur. Am. f. 

1986 
2.89   (1.88   3.61) -0.005   (-0.005   -

0.003) 
4.42e-7   (-5.43e-7   

5.90e-7) ns 
Eur. Am. f. 

1987 
3.31   (2.41   4.59) -0.005   (-0.007   -

0.004) 
5.34e-7   (4.00e-7   

8.32e-7) 
Eur. Am f. 1988 4.18   (3.01   5.83) -0.006   (-0.009   -

0.005) 
6.72e-7   (5.29e-7   

9.51e-7) 
Eur. Am. m. 3.89   (3.48   4.30) -0.005   (-0.006   -

0.005) 
5.73e-7   (4.94e-7   

6.78e-7) 
Eur Am. m. 

1985 
4.04   (3.29   5.13) -0.005   (-0.006   -

0.004) 
5.29e-7   (3.42e-7   

7.50e-7) 
Eur. Am. m. 

1986 
3.87   (2.79   4.71) -0.005   (-0.006   -

0.004) 
5.24e-7   (3.05e-7   

6.56e-7) 
Eur. Am. m. 

1987 
4.11   (3.41   4.97) -0.006   (-0.007   -

0.005) 
6.98e-7   (5.04e-7   

8.36e-7) 
Eur. Am. m. 

1988 
3.53   (2.77   4.66) -0.005   (-0.006   -

0.004) 
5.29e-7   (3.38e-7  

6.65e-7) 
As.=Asian, Af. =African, His= Hispanic, Eur.= European, Am. = American, f. = female, and m. = 
male. 
LCL=lower 95% confidence limit, UCL=upper 95% confidence limit 
ns = not significantly different from zero based on the bootstrapped confidence limits 
 
 



 

 

Table 6. Hierarchal Analysis of the 2nd order terms of the mortality polynomial and heterogeneity 
of mortality patterns.  Standard log likelihood ratio test (Chi. Sq.) 
 
Null hypothesis 
Population 

c1= 0.0 
(3.84 needed to reject)

c2= 0.0 
(3.84 needed to reject)

c1= c2= 0.0 
(5.99 needed to reject)

a1= a2; b1= b2; c1= 
c2 

(7.81 needed to reject)
As. Am. f. 6.34 0.41ns 2.06ns 2.52ns 
As Am. m. 0.97ns 0.55ns 1.77ns 0.55ns 
His. Af. Am. f. 0.20ns 5.66 11.74 8.75 
His.Af. Am. m. 9.52 1.30ns 29.41 10.74 
Af. Am. f. 25.75 22.42 115.70 55.65 
Af. Am. m. 43.19 3.33ns 66.65 58.88 
His. Am. f. 24.74 21.48 86.90 21.54 
His. Am. m. 25.43 3.84ns 81.96 82.04 
Eur Am. f. 85.01 13.69 177.85 99.10 

Eur Am. f. 1985 3.29ns 4.73 26.96 3.25ns 
Eur. Am. f. 1986 24.93 1.04ns 44.54 26.65 
Eur. Am. f. 1987 17.28 3.41ns 28.96 31.92 
Eur. Am f. 1988 39.97 5.35 78.89 45.25 

Eur. Am. m. 77.71 20.03 208.37 119.64 
Eur Am. m. 1985 27.29 2.78ns 53.27 17.26 
Eur. Am. m. 1986 14.95 2.52ns 27.39 35.63 
Eur. Am. m. 1987 16.80 6.39 69.02 32.44 
Eur. Am. m. 1988 15.89 10.19 57.75 37.96 

As.=Asian, Af. =African, His. = Hispanic, Eur.= European, Am. = American, f. = female, and m. = 
male. 
ns= not significant



 

 

Table 7. Some Characteristics of Fits of the Observed Birth Cohorts 
 
             1−π µ2−µ1 Secondary CDR Primary CDR Cros
As. Am. f. 0.10 170 17.2 2.5 1
As Am. m. 0.10 153 10.4 3.0 0
His. Af. Am. f. 0.12 589 52.0 3.6 1
His.Af. Am. m. 0.09 694 66.3 6.6 0
Af. Am. f. 0.13 658 59.3 6.5 0
Af. Am. m. 0.12 750 72.4 7.2 0
His. Am. f. 0.07 617 44.5 4.0 0
His. Am. m. 0.10 523 35.7 4.8 0
Eur Am. f. 0.06 487 36.7 3.0 0

Eur Am. f. 1985 0.06 488 39.0 3.1 0
Eur. Am. f. 1986 0.06 457 35.2 2.9 0
Eur. Am. f. 1987 0.06 540 39.4 2.5 0
Eur. Am f. 1988 0.06 468 33.1 3.3 0

Eur. Am. m. 0.07 555 43.1 3.6 0
Eur Am. m. 1985 0.07 496 38.2 4.0 0
Eur. Am. m. 1986 0.07 540 42.3 3.6 0
Eur. Am. m. 1987 0.06 639 50.4 3.3 0
Eur. Am. m. 1988 0.07 552 44.8 3.5 0

As.=Asian, Af. =African, His. = Hispanic, Eur.= European, Am. = American, f. = female, and m. = 
male. 
CDR = subpopulation specific crude death rates per 1000 births. 
Cross= whether the subpopulation and birth weight specific mortality curves cross. 
Area=area between the subpopulation and birth-weight specific mortality curves as described in 
footnote 1. 
 



 

 

Table 8.  Ratio of Hessian to Bootstrapped Confidence Intervals 
 

 Af. Am. f. Eur. Am. m. 

π 1.0 1.0 

µ1 1.2 1.2 

µ2 1.0 0.9 

σ1 0.9 1.1 

σ2 1.2 1.0 
a1 0.8 0.7 

b1 0.9 0.7 

c1 0.9 0.8 

a2 1.0 0.3 

b2 1.0 0.4 

c2 0.8 0.8 
Af.=African, Eur. = European, Am.= American, f.= females, m.= males 

 

 
 
 



 

 

  
Table 9.  Percent Mean Bias of Parameter Estimation and Significance of Bias by Sample Size for 
the Three Case Studies 
 
 Af. Am. f. Eur. Am. m. Simulated Parameter Sets 
 25k 50k 100k 25k 50k 100k 25k 50k 100k 
π 0.20 0.13 -0.08 0.14 0.11 -0.04 0.02 0.24 -0.15 

µ
1 

0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 

µ
2 

0.02 0.01 -0.03 -0.08 -0.03 -0.02 -0.03 -0.02 -0.09 

σ
1 

-0.05 -0.01 0.01 -0.02 -0.02 0.01 0.01 -0.02 0.02 

σ
2 

-0.05 0.05 0.07 -0.08 0.03 -0.02 0.09 -0.06 0.04 

a1 -2.77 -1.68 -1.07 -2.34 0.51 0.52 -0.54 -0.08 -0.46 

b1 -2.17 -1.25 -0.85 -2.13 0.16 0.24 -0.60 -0.13 -0.46 

c1 -2.74 -1.49 -1.07 -2.96 -0.12 0.09 -0.84 -0.23 -0.58 

a2 0.79 0.38 0.24 -7.80 -6.02 -3.80 -2.45 -2.65 -0.91 

b2 0.20 0.26 0.22 -16.74 -12.44 -6.99 -6.42 -5.38 -2.27 

c2 -3.34 -0.35 0.15 -232.82 -112.97 -41.28 -51.19 -34.32 -13.55 

 k = 1000s, Af. = African, Eur. = European, Am. = American, f. = females, m. = males 
The largest value of t for any cell is 0.63.  None of the bias 
estimates approach significance.



 

 

 Table 10, Relative Reduction in Mean Squared Error (MSQE) 
with Increasing Sample Size& for the Three Case Studies. Values 
> 1.0 Indicate Improvement in Consistency as Sample Size 
Increases. 
 
 Af. Am. f. Eur. Am. m. Simulated Parameter Sets 
 25k/50k& 50k/100k& 25k/50k& 50k/100k& 25k/50k& 50k/100k& 

π 2.31 1.77 1.88 2.15 0.93 1.05 

µ1 2.15 2.00 2.01 1.94 1.08 1.01 

µ2 2.15 1.89 1.91 2.18 1.10 0.98 

σ1 2.14 1.93 2.11 1.88 1.05 1.06 

σ2 2.23 1.80 1.82 2.17 1.41 1.36 
a1 2.07 2.01 2.36 1.93 1.38 1.30 

b1 2.05 2.01 2.36 1.97 1.49 1.36 

c1 2.04 2.03 2.37 2.01 1.66 1.22 

a2 2.08 2.03 1.77 2.18 1.60 1.40 

b2 2.42 2.28 1.62 2.32 1.52 1.82 

c2 5.12 5.03 1.55 2.51 1.44 2.62 
Mean 2.43 2.25 1.97 2.11 1.33 1.37 

k = 1000s, Af.=African, Eur. = European, Am.= American, f.= females, m= males 
&= MSQE with smaller sample size / MSQE with larger sample size, e.g. 25k/50k. 
 
 
 
 
 
 
 



 

 

Table 11 Number of Flips in Two Case Studies per 1000 Trials 

 Eur. Am. m. Simulated Parameter Sets 

Sample size Primary Secondary Primary Secondary 

25,000 2 22 11 6 

50,000 0 3 5 1 

100,000 0 0 2 0 

Eur. = European, Am.= American, m. = males 



 

 

Table 12.  The Logistic Regression Coefficients for Primary Flips 
 

Parameter Coefficient Std. Error  t value  
Intercept  -15.40 5.20  -3.0 

1−π  6.195 2.623   2.4 

µ1 4.58e-3 5.30e-4   8.7 

µ2  1.03e-3 3.95e-4   2.6 

σ1 -1.33e-2 6.60e-3 -2.0 

σ2 -5.68e-3 2.41e-3 -2.4 
a1  -1.69 0.10  -17.3 

b1 -5192.20  269.58 -19.3 

c1 -16492159.95 936477.57 -17.6 

a2 1.34 0.13 10.1 

b2 3044.59 180.97 16.8 

c2 8981036.11 601720.63   14.9 
Null Deviance: 2174.0 on 999 degrees of freedom 
Residual Deviance: 332.2 on 988 degrees of freedom 



 

 

Table 13. The regression coefficients for secondary flips 
 
Need to rerun to get more significant places (Mike had the results rounded) 
 

Parameter Coefficient Std. Error t value
 Intercept   -11.82 5.01 -2.4

1−π  -37.28 3.27 -11.4

µ1 -1.90e-3 6.09e-4 -3.1

µ2  4.88e-3 4.87e-4 10.0

σ1 8.19e-3 7.41e-3 1.1

σ2 -3.65e-3 2.36e-3 -1.5
a1 9.61e-2  4.35e-2 2.2

b1 158.85  89.77 1.8

c1 1199184.55 469328.61 2.6

a2 -7.21e-1 1.50e-1 -4.8

b2  -1543.91 137.87 -11.2

c2 -7095120.50  535387.72 -13.3
Null Deviance: 1134.2 on 999 degrees of freedom 
Residual Deviance: 545.3 on 988 degrees of freedom 



 

 

 
Table 14 – Power Estimates for Two Case Studies  
 
Sample Size      12,500     25,000     50,000      100,000 

Af. Am. f. 
Power       82.5      98.1      100.0       100.0 
95% Confidence Limits 80.0 to 84.8 97.1 to 98.9 99.6 to 100.0 99.6 to 100.0 

Eur. Am. m. 
Power       21.8       47.3      79.3       97.0 
95% Confidence Limits 19.3 to 24.5  44.2 to 50.5 76.7 to 81.8 95.7 to  98.0 
Results based on 1000 trials. 



 

 

Table 15 – Power Estimates for the Remaining 10 Independent Observed Data Sets  
 
 12,5000 

(95% CL) 
25,000 

(95% CL) 
50,000 

(95% CL) 
100,000 

(95% CL) 
As. F. 58 

(43.2 to 71.8) 
84 

(70.9 to 92.8) 
98 

(89.4 to 100) 
100 

(92.9 to 100) 
As. M. 28 

(16.2 to 42.5) 
40 

(26.4 to 54.8) 
72 

(57.5 to 83.8) 
98 

(89.4 to 100) 
Af. Am. m. 72 

(57.5 to 83.8) 
100 

(92.9 to 100) 
100 

(92.9 to 100) 
100 

(92.9 to 100) 
Af His.c m.s 90 

(78.2 to 96.7) 
100 

(92.9 to 100) 
100 

(92.9 to 100) 
100 

(92.9 to 100) 
Eur. His. f.  44 

(30.0 to 58.8) 
70 

(55.4 to 82.1) 
100 

(92.9 to 100) 
100 

(92.9 to 100) 
Eur. His. m. 38 

(24.7 to 52.8) 
70 

(55.4 to 82.1) 
96 

(86.3 to 99.5) 
100 

(92.9 to 100) 
Eur Am. f. 1985 14 

(5.8 to 26.7) 
36 

(22.9 to 50.8) 
44 

(30.0 to 58.8) 
96 

(86.3 to 99.5) 
Eur. Am. f 1986 32 

(19.5 to 46.7) 
76 

(61.8 to 86.9) 
94 

(83.5 to 98.7) 
100 

(92.9 to 100) 
Eur. Am. f. 1987 20 

(10.0 to 33.7) 
48 

(33.7 to 62.6) 
88 

(75.7 to 95.5) 
100 

(92.9 to 100) 
Eur. Am. f. 1988 58 

(43.2 to 71.8) 
88 

(75.7 to 95.5) 
100 

(92.9 to 100) 
100 

(92.9 to 100) 
Estimates based on 50 trials each 
As.=Asian to Af. =African, His. = Hispanic, Eur.= European, Am. = American, f. = female, and m. 
= male. 



 

 

Table 16 – Logistic Regression of Power based on Data in Tables 7 and 15 
.   
Parameters Coefficients Standard Error t-value
Intercept -10.4 0.8 -12.7
Difference in Areas1 5.2e-6 5.7e-7 9.1
Primary Crude Death Rate 487 72 6.8
Difference in birth weight means 3.6e-3 6.1e-4 5.8
Indicator: crossing mortality curves .74 .30 2.5
Sample Size 7.4e-5 4.8e-6 15.4
Null Deviance:   914.7 on 39 df 
Residual Deviance:  84.2 on 34 df 



 

 

Table 17  Comparison of Percent Power Predictions from Logistic Regression (Table 16)  and 
Direct Estimation (1000 simulated trials) for the Two Case Studies (Table 14). 
 
Sample Size From Regression 

(95% Confidence Limits) 
From 1000 Simulations 

(95% Confidence Limits) 
  Af. Am. f. 

12,500 71.8 
(64.3 to 79.3) 

82.5 
(80.0 to 84.8) 

25,000 86.5 
(82.2 to 90.8) 

98.1 
(97.1 to 98.9) 

50,000 97.6 
(96.5 to 98.7) 

100 
(99.6 to 100) 

100,000 99.9 
(99.9 to 100.0) 

100 
(99.6 to 100) 

Eur. Am. m. 
12,500 17.3 

(12.6 to 22.0) 
21.8 

(19.3 to 24.5) 
25,000 34.5 

(28.0 to 41.0) 
47.3 

(44.2 to 50.5) 
50,000 76.9 

(70.9 to 82.8) 
79.3 

(76.7 to 81.8) 
100,000 99.3 

(98.7 to 99.8) 
97.0 

(95.7 to 98.0) 
Af. = African, Eur. = European, f. = female, m. = male. 
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