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Abstract 
 
 

Dynamic microsimulation models create long-run population projections based on annual 
micro-level transitions into and out of various demographic and economic states. Within 
most microsimulation models, a module (or set of modules) exists to create new families 
and to dissolve existing families. This paper details the set of modules created for the 
Congressional Budget Office's Long-Term (CBOLT) Model to simulate family formation 
and dissolution over a 75-year time horizon. The process includes three steps: 1) the 
selection of individuals, among those at risk of marriage, to become married, 2) given an 
annual marriage market, the creation of unions with realistic joint-distributions of spousal 
characteristics via a computationally efficient mate-matching algorithm, and 3) given the 
characteristics of a married couple and the duration of marriage, the dissolution of 
marriages through divorce. The estimation techniques, model applications, and results are 
presented in detail. 
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I. Introduction 
 

Dynamic microsimulation has been used to model phenomena ranging from the 

spread of AIDS (Morris and Kretzshmar, 2000), to the flow of immigrants (Walker, 

1997), to the progression of disease through the human body (Roberts et al., 2000).  

Though the technique is applicable for numerous (and disparate) exercises, all 

practitioners seek a common end: to incorporate historical relationships with random 

possible outcomes to project how the future will unfold. Whether the unit of observation 

is a civilization, a society, or an individual human being, microsimulation provides one of 

the of the most promising tools available to for those seeking to model complicated 

processes over time and into the future.  

The contribution offered by this paper is to that tradition of microsimulation 

concerned with policy analysis.  The authors seek to create a longitudinal micro data file 

that contains information about a synthetic population of future Americans.  In particular, 

we seek information on an individual’s age, sex, education, marital status, fertility, 

health, labor force participation, wealth accumulation, participation in government 

programs, and, ultimately, their mortality.  Although the data set described above will be 

used to analyze solvency and distributional questions about Social Security, the 

projections necessary to undertake such analysis rely on demographic analysis.  This 

paper describes one set of building blocks used in the construction of that data set: 

namely, transitions into and out of marriage and the formation and dissolution of 

couples.1 

 

                                                 
1 For expositional simplicity this paper omits a discussion of remarriage, even though it is modeled 
explicitly.  The same techniques described below are used to model this event and the results similar to 
those presented in Sections III thru V generally obtain.   
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Microsimulating Marital Transitions for Policy Analysis 
 

Marital transition and couple formation modules exist in several well-established 

policy simulation micro models.  For example, economists at Rand developed the 

demographic modules for Modeling-Income in the Near Term (MINT), a 

microsimulation used by the Social Security Administration.  For that project, a 

continuous-time hazard model was used to derive coefficients for a static 

mircosimulation model that projects Social Security benefits for a cross section of 

individuals alive in a given base year and through 2040 (Panis and Lillard, 1999).     

The Urban Institute’s DYNASIM model, last updated in 2000, was constructed to 

the effect of public policy on issues ranging from welfare, to Social Security, to taxes. 

Like MINT, it includes marital transitions (modeled as a discrete-time hazard).  Unlike 

MINT, however, DYNASIM also generate spousal linkages.  The approach for 

generating matches in DYNASIM differs somewhat from the one presented here. Rather 

than relying on econometrically derived correlations, DYNASIM computes an 

exponential distance function based on differences between age and educational 

attainment to derive the probability of a union formation.  

The last significant microsimulation model considered is the CORSIM (now 

POLISIM) effort initiated by Steve Caldwell at Cornell University.  The marital 

transition modules in CORSIM rely on a standard logistic regression and utilize variation 

in age, earnings, labor supply, and education to determine the probability of going into 

and out of marriage.  No explicit attempt is made to capture the pure time effects on 

marriage and divorce (CORSIM, 2001).  With respect to mate matching, CORSIM 

utilizes a potential pairs data file that consists of a separate observation for every 
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potential match.  Each observation contains the characteristics of the potential husband 

and the characteristics of the potential wife.  The mate-matching algorithm in CORSIM 

begins with an estimation of the relative “compatibility” of each potential couple.  The 

compatibility index is estimated using a logistic regression on a potential pairs data file of 

recent marriages observed in census data. 

 The family formation dynamics presented in this paper were developed in the 

process of constructing the Congressional Budget Office’s Long-Term (CBOLT) Policy 

Simulation Model.  Like the models mentioned above, this model was designed to 

examine the effects of various federal policy alternatives.  CBOLT tracks many outcomes 

by measuring the effect of policy changes on everything from the economy to the federal 

budget to the Social Security system to individuals.  Consequently, CBOLT includes 

various combinations of actuarial algorithms for projecting population and Social 

Security system finances, a macro growth model with consumption and labor supply 

feedbacks, a detailed federal budget accounting framework, and a microsimulation model 

that operates on a sample of the population.  For present purposes, our discussion is 

limited only to the microsimulation model.2  

The microsimulation model was first operational in late 2002.  In its present form 

it annually simulates fertility, mortality, immigration, labor force participation, hours 

worked, earnings, Social Security benefit claiming and, as presented here, marital 

transitions and pairings.  In addition to these processes, current model development 

efforts are directed toward wealth accumulation (e.g., savings behavior and pensions), 

micro-level health status and shocks, and micro-level fertility.  CBOLT simulates each of 

                                                 
2 For a complete discussion of the CBOLT model, see O’Harra, et al., (2004) 
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these events, for each observation, over a projection period that starts in 2003 and ends in 

2077.  

 Like other policy simulation models this model begins with a base dataset; in the 

case of CBOLT, the starting point is the 1998 Continuous Work History Sample 

(CWHS).3  This data set, administered by SSA, contains longitudinal earnings 

information (from 1951 to 1998) on a 1 percent stratified cluster sample of all people 

ever issued Social Security numbers, which translates into a sample size of roughly 3 

million individuals (Smith, 1989).  To convert these data a useable size preparation of the 

base data file involves an additional 1 in 100 draw, which produces a 1 in 1000 sample of 

all Social Security Numbers ever issued.  The result is that each year, the entire sample 

includes more than 300,000 individuals recording taxable earnings, total compensation, 

self-employment status, OASDI benefit entitlement, or death.   

The CWHS is preferable for use as a dynamic micro-simulation base-file when 

compared with the available cross-sectional files such as the Decennial Census or Current 

Population Survey (CPS) or public-use longitudinal files such as the Panel Survey of 

Income Dynamics (PSID) or the Survey of Income and Program Participation (SIPP).  

Available cross-sectional data sets do not have the requisite longitudinal histories needed 

to project forward using dynamic microsimulation.  Publicly available longitudinal data 

sets like the PSID are much smaller than the CWHS, and those data also suffer from 

response problems for the highest-earning individuals as well as recall bias.  The CWHS 

is an administrative sample and therefore has more accurate income information for the 

entire earnings distribution.  The downside is that the administrative nature of the CWHS 

                                                 
3 As of this writing, the base data is being updated to the 2001 CWHS.   
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limits the demographic data to the information that is available on the initial Social 

Security number application:  year of birth, sex, and race. 

Given the lack of detailed demographics, it is necessary to impute several key 

variables – such as educational attainment, marital status, and marital history – when 

using the CWHS to project future Social Security taxes and benefits.  Those variables are 

imputed on the basis of measured correlations observed in the PSID, the SIPP, and the 

CPS.  Additionally, part of the imputation strategy relies on a historical simulation using 

CBOLT’s that operates over a period for which there are actual micro data and aggregate 

control totals with which simulation results can be compared.   

The historical simulation exercise is a useful gauge of whether the estimated 

transition equations are doing a good job of predicting marital outcomes in recent history.   

The simulations start in 1984, at which point everyone alive in the CWHS has been 

assigned a marital status, education, and duration in the relevant marital state.  The 

assignments are made such that the starting (1983) population matches the characteristics 

of the (SSA Area) population that CBOLT uses for its aggregate reference point.  At this 

point, the initial stock of those identified as “married” are matched to spouses.  The 

simulation then proceeds forward from 1984 through 1998 using actual CWHS earnings 

and estimated marital transition equations. The results of the exercise are a set of 

“calibration factors” which are, in effect, average errors in targeting the observed 

aggregate marital distributions (again, as reported in the SSA Area Population estimates).  

Only after imputations have been made for the historical period and the 

calibration factors have been derived to correct for systematic biases is the projection of 

future outcomes possible.  The machinery driving these projections is computationally 
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intensive.  The model is programmed in Fortran90 to allow for direct operation on multi-

dimensional matrices.  As of this writing the model consists of nearly 1,000 files and 

subroutines.  The advantage of writing a the model in a “low-level” language is that it 

allows high-end desktop PCs to evaluate each of the several hundred thousand 

individuals, all of whom are eligible to experience multiple stochastic demographic and 

economic transitions in each of 75 years.  The result is that solving the dynamic micro 

model requires 1.4 gigabytes of RAM and, in a world of fixed economic inputs, a 

solution time of about 20 minutes per run (depending on processor speed).   

As mentioned above, the micro model operates in the context of a macro growth 

framework.  By embedding the microsimulation into such an environment, stochastic 

economic and demographic inputs such as inflation, real wage growth, unemployment, 

etc. can also be drawn and ranges of probable outcomes (or confidence intervals) can be 

described.4  Such a solution is considerably more computationally intensive as it requires 

solving the micro model multiple times.  The result is that 400 runs with randomly drawn 

inputs require about 150 hours of processing time.  These runs are feasible, however, 

because the simulations can be distributed across multiple machines (for example, 

machine 1 might run simulations 1 through 50; machine 2 would run 51-100, etc.).  

 

Previous Research on Marital Transitions and Mate Matching 
 
 The previous (and ongoing) microsimulation efforts discussed above describe the 

modeling tradition that CBOLT draws upon and extends.  Of course, in constructing a 

model designed to generate synthetic marital experiences it is necessary to preserve the 

relationships observed by other social scientists.  While this paper introduces novel 
                                                 
4 For a complete description of the stochastic model used in CBOLT see CBO (2001).  

 
Draft: Please Do Not Quote 

6



 

technical applications and extensions its contribution to the social science literature is 

somewhat limited. 

 Determinants of marriage and divorce that have been repeatedly identified include 

age, educational attainment, earnings, duration in married/divorced states, income, the 

presence or absence of children, and birth cohort (see, e.g. Lillard and Waite, 2000; 

Peters 1998).  These trends are documented and discussed in greater detail in Section II 

below.  Additionally, research on marriage and divorce trends indicate that perhaps 

purely social perceptions of entering and leaving legally sanctioned unions are changing 

as well. For example, several scholars have noted the decreasing rate of people ever 

entering marriage (Raley, 2001; Shoen and Standish 2000; Shoen and Weinick 1993).  

Demographers have noted that, after increasing for each birth cohort, divorce rates have 

begun to level off (Goldstein, 1999; Ruggles, 1997).  

 Understanding mate matching requires knowledge both of the social science 

related to assortative mating as well as the computer science related to marriage 

algorithms.  In the literature, unions are homogamous along several dimensions; that is 

people tend to marry people with whom they have a lot in common.  For example, 

education, race, age, socioeconomic status are just a few of the attributes on which 

couples appear to sort (Qian, 1998; Mare, 1991; Pencavel, 1998). 

 To operationalize non-random marital sorting and preserve the relationships 

identified in the economics and sociology literature, scholars have attempted to develop 

algorithms to match potential pairs.  An early effort defined and solved the “stable 

marriage problem” formally, although an algorithm to match annual pools of residents 

with hospitals had been in use for more than a decade before the academic publication of 

 
Draft: Please Do Not Quote 

7



 

the computational algorithm (Gale and Shapley, 1962).  A set of “stable marriages” exists 

if there are no two couples where a partner in each couple would prefer to be matched 

with a person in the opposite couple.  For this condition to be satisfied, however, what it 

means to “prefer” one potential mate over another needs to be defined and quantified.  

Recently, however, the stable marriage algorithm has been criticized for producing too 

many annual sets of marriages where an exorbitant proportion of the population exhibit 

husbands that are one year older than the wife (Bouffard et al., 2001).  Easther and Vink 

(2001) suggest that these results are a byproduct of theoretical shortcomings of the stable 

marriage algorithm.  In particular, they argue that the stable marriage algorithm misuses 

the information contained in the “compatibility” measure estimated for each potential 

pair.  

 An alternative to the stable marriage algorithm is to use a stochastic approach to 

match potential spouses in a marriage market.  Rather than relying on an optimization 

routine to match spouses, a stochastic matching routine processes the information on the 

basis of Monte Carlo techniques. If the probability of union formation derived in the first 

step exceeds a random number drawn for a uniform distribution then a marriage occurs. 

Several policy simulation models incorporate this approach. (Easther and Vink, 2000; 

Zedlewski, 1990).  

 
II. Data 
 
 Microsimulation models often require coefficient estimates based on out-of-

sample data.  These coefficients serve as the basis for projecting marital transitions.  

Although this paper explores two phenomena – transitions between marital states and the 

joint characteristics of spouses – all coefficients are estimated from the marital history 
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topical module in the 1996 SIPP.  These data were also linked to longitudinal Social 

Security earnings records, a proprietary dataset called the Summary Earnings Records 

(SER) 

 For simplicity some SIPP categories were collapsed for estimation purposes.  For 

example, the field “married, spouse in home” and “married, spouse out of home” were 

collapsed into a single variable; similarly, divorced and separated were collapsed into a 

single “divorced.”  Even though the sample is a cross-section as of 1996, a longitudinal 

data file can be constructed because complete marital history profiles can be produced.5 

Although there are possibly 69,000 observations directly available from the SIPP for 

analysis, the fact that these data are merged with proprietary longitudinal earnings 

records reduces the sample to 38,380 observations.  

These data reveal historical patterns that inform projections into the future.  Of 

particular significance for estimating overall transitions is the evidence that dramatic 

differences across cohorts are observed, even after controlling for the standard 

determinants.  For example, people born in the 1960s and 1970s are less likely to get 

married at younger ages (even after controlling for education and other variables) than 

people born in the 1950s or before. 

 Although the SIPP is a large and nationally representative sample of the 

population, there are still reasons for caution when using it to analyze marital transitions, 

especially over time.  Table 1 compares SIPP marital transition rates with aggregate data 

                                                 
5 Because the SIPP tracks data on the most recent marriage, the marriage before the most recent marriage, 
and the first marriage, there are some marital history profiles where gaps have to be filled in.  Because total 
number of marriages for each individual is known it is possible to fill in “missing marital transitions” for 
those who have been married 4 times or more.  To avoid losing too many observations in the remarriage 
pool, intervening, unreported marriages were assigned the average duration of all higher order marriages 
ending in divorce and intervening, unreported divorces were assigned the average duration for a all 
divorces that end in remarriage. 
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from the Vital Statistics database collected by the National Center for Health Statistics 

(NCHS).6  In general, the aggregate transition rates in the data sets are similar; noticeable 

differences from the 1990 to 1995 measures include lower divorce rates for both sexes 

and somewhat lower remarriage rates for men.  Those differences can be explained by the 

slightly different time periods the fact that the SIPP data excludes the institutional 

population, and reporting problems associated with distinctions between (for example) 

divorce and separation. The table does not compare SIPP and NCHS marital transitions 

for earlier time periods, because the SIPP, by construction, only questioned people alive 

in 1996 about their marital history.  Therefore, any comparison of earlier time periods 

would not be meaningful, but it should be acknowledged that recall bias might affect the 

analysis that follows. 

 
III. Marriage  
 
 As suggested above, understanding the historical trends in marital behavior are 

changing will be useful in generating projections for the future.  Figures 1 through 4 

show predicted marital transition probabilities from the SIPP across age and cohort 

groups.  The graphs are produced using a kernel-smoothing technique, where any point 

on the graph is a weighted average of all observations within a fixed “band” around that 

age.  For example, the value for age 25 in a given cohort is actually a weighted average of 

people ages 23, 24, 25, 26, and 27 in that cohort, with people age 25 having the highest 

weights, people ages 24 and 26 having smaller weights, and people ages 23 and 27 

                                                 
6 The NCHS data is the main data set used by the Social Security Administration in their actuarial analysis 
of marital transitions.  See, for example, Bell (1997). The data were compiled annually from state Vital 
Statistics offices and issued in numerous public-use formats. However, as a result of budget cuts in 1990, 
those data are no longer collected or reported 
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having even smaller weights.  All of the vertical axes are expressed as rates per 100 

eligible, where eligibility varies with the transition – first marriage eligibles are never 

married, divorce eligibles are currently married, and remarriage eligibles are currently 

divorced or widowed.  

 First marriage rates are shown in Figures 1 through 4.  Figures 1 and 2 show 

annual rates of first marriage, while Figures 3 and 4 show cumulative rates.7  (One-

hundred minus the cumulative rate at any given age is the fraction of people who never 

marry.)  The two sets of figures tell a similar story in slightly different ways.  There have 

been significant declines in rates of first marriage at young ages (through the mid-20s) for 

all cohorts since the 1950s.  However, the rate of decline (the gap between the 

sequentially ordered cohort probabilities at a given age) for both men and women seems 

to have slowed.  Also, there is some evidence that rates of first marriage may actually be 

slightly higher at older ages (late 20s and older) for more recent cohorts.  Thus, as noted, 

there is no single statement about time/cohort effects that describes what is happening at 

all ages, which suggests the need for flexibility in the econometric specification for the 

transition equations.   

 The 1996 SIPP data used to generate Figures 1 through 4 indicate key aspects 

about marriage rates that should be considered when estimating marital transition 

equations: there are generally nonlinear patterns of transition probabilities across age 

groups within any given cohort, and there seem to have been changes in transition rates at 

certain ages across cohorts.  It remains to be shown in this section whether those 

observations can be explained by underlying determinants of marital transition such as 

education and income (for all transitions) or duration in state (for divorce and 
                                                 
7 Again, remarriage results are not presented though the process is explicitly modeled. 
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remarriage).  But it is clear that flexibility in the econometric analysis across both age and 

cohort dimensions is crucial – one would not, for example, want to impose a cohort or 

time effect that is proportional across all age groups, because some transition 

probabilities have actually moved in different directions along the age dimension. The 

SIPP data allow for person-year units of observation.  The final set of controls is age, sex, 

education, lagged income, and time/cohort effects.    

 Given the list of control variables, the next decision involves choosing an 

estimation strategy.  Most of the exercises above involve splitting the sample by 

demographics and estimating either logit or hazard models.  Although it is clear that one 

should estimate different equations across sex groups, Figures 1 through 4 indicate that 

broad age groups will not capture the interesting curvature of the underlying transition 

probabilities across age groups.  Also, it is apparent that cohort/time effects will vary 

with age, and it is also likely that the effect of some control variables (education or 

income) will vary across age groups.  So, even if one used a polynomial in age to capture 

the curvature of the transition probabilities by age, the equation would still be imposing 

the same effect from the other control variables by age. 

 The econometric approach used here can be thought of as an “age-centered” 

logistic estimation technique, which is an extension of the group-based approach used by 

other models.  A separate transition equation is estimated for each single year of age and 

each sex group, but the sample used in the estimation actually includes every observation 

within a fixed age band around that point.  For example, the estimation for males age 25 

actually includes all males ages 21 though 29, though, as in the development of the 

smoothed Figures 1 through 4, the observations farther from the center are weighted less 
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heavily.  As a further control, age itself is actually one of the variables used in the 

estimation.  This approach has the desirable aspect that the effect of every other control 

variable (income, education, duration, and cohort/time effects) is allowed to vary with 

age (which would be true with separate equations for each age group) but does not suffer 

from small sample size problems (which would be the case if one ran single equations for 

each individual age).  

 The concerns about using an overly restrictive estimation strategy for the 

transition into first marriage are borne out in the results, which are shown in Tables 2 and 

3.  Each table shows a series of logits estimated for a given sex group; for example, Table 

2 has the results of estimating separate first marriage logits for females ages 17 through 

60. 8 Each set of estimated coefficients is reported on a separate row, with significant (at 

the 90 percent confidence level) variables indicated by BOLD numbering.  As indicated, 

there is both a constant and age coefficient for each single year of the age group, which at 

first blush seems odd but makes sense in the context of the age-centered approach.  The 

age coefficient is an estimate of the slope of the probability function at that age, but it 

may make more sense to think of the actual simulation “constant” that applies to 

everyone of a given age as the estimated constant term plus the age coefficient times the 

value of age.  

 The predominance of BOLD numbering in Tables 2 and 3, especially at the 

youngest ages, implies that the chosen correlates do in fact significantly affect first 

                                                 
8 The “bands” actually vary in size at the youngest ages; the equation for 17-year-olds includes 16 through 
19, for 18-year-olds includes 16 through 20, etc; for most ages the bands are set to plus or minus four years. 
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marriage probabilities.  For both men and women, education (a dummy variable 

indicating 14 or more years of shooling) has a significant negative effect on first marriage 

through the early 20s but then becomes positive and significant for age groups through 

the mid- to late 30s.  Income (which is lagged, not contemporaneous) has a significant 

positive effect for both women and men at most ages, though the effect turns negative 

(and eventually becomes significant) for women past their late 40s.  

 Tables 2 and 3 also suggest that the cohort effects are all significantly negative for 

the youngest age groups.  But, as expected, that effect diminishes with age, as the first 

marriage probabilities converge for the older age groups (and, as noted, might even be 

higher for the more recent female cohorts at older ages).  The obvious question for 

forward-looking micro-simulation is how to fill in cohort effects after the historical data 

ends – that is, for ages 46 and above for the 1950s cohort, ages 36 and above for the 

1960s cohort, and ages 26 and above for the 1970s cohort.9  This paper explores one of 

several possible approaches. 

 When considering how to extend the cohort effects, it helps to show the patterns 

in a graphical form.  The solid lines in Figures 5 and 6 show the cohort effects for first 

marriage (from Tables 2 and 3) by age for the 1950s, 1960s, and 1970s cohorts.  The 

dotted lines show the extensions applied to the cohort terms in order to produce forecasts.  

Notice first that the last observed cohort term for both males and females (the age 45 

value for the 1950s cohort) is assigned to all older age groups for that cohort.  This is 

consistent with the following interpretation: women (men) in the 1950s cohort were 

                                                 
9 The SIPP data did not suggest any basis for extending trends to the 1980s cohort and beyond, so the last 
set of residual cohort effects derived in all cases is for the 1970s group.  Those residual terms are then 
applied to the 1980s cohort and all future cohorts “born” into the model. 
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slightly more (slightly less) likely to get married at age 45 than previous cohorts, and thus 

it seems reasonable to expect that the same will be true at ages 46 and above.   

 The second set of observations applies to the values for the 1960s and 1970s 

cohorts between the ages of 26 and 46.  The “s-shaped” pattern of estimated cohort 

effects is consistent with the shifting of the peak age of first marriage rates to the right 

over time at the same time the height of the peak is falling (see Figures 1 and 2).  By 

assigning a pattern of cohort terms that is proportionally shifted from the previous cohort, 

the extensions shown in Figures 5 and 6 keep the shape of the probability distribution 

constant but continue the shift.  Thus, there is a smooth transition of first marriage 

probabilities at all ages across the three cohorts.  The convergence of cohort effects at 

older ages is the consistent with underlying convergence of the first marriage rates, again, 

as indicated by the available data in Figures 1 and 2. 

 
IV. Mate Matching 
 

Given that the model generates and annual marriage market, the next step in the 

simulation of marriage is to unite people in a synthetic household.  To estimate the 

probability of a union forming between any given set of newlyweds, again we use data 

from the marriage history topical module in the 1996 SIPP.  As above, this topical 

module is linked to longitudinal Social Security earnings records.  These same data are 

also used to provide baseline descriptions of the joint distributions that serve as the 

benchmark with which simulated outcomes are compared. After dropping observations 

for missing information, the final analysis file contains 1,277 couples – 834 first marriage 
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couples and 443 higher order marriage couples. 10  Newlywed couples are defined as 

marriages that started in 1994, 1995, or 1996.   

Similar to the characteristics used to analyze the transitions, there are four spousal 

characteristics that are included in mate-selection models – age, education, earnings, and 

marriage order.  Those variables were selected because of their relevance to retirement 

and Social Security policy.  Social Security rules indicate that age and earnings 

differentials directly affect the eligibility, benefit calculation, and claiming behavior of 

retired couples.  Although education does not have direct implications for Social Security 

benefits or eligibility, it is a consistent predictor of mate selection (Mare, 1991; Pencavel, 

1998; Qian, 1998).  In addition, potential imperfections in the earnings measure make it 

important to include education in a mate-selection model.  Including an education 

measure in the model allows low-earning, highly educated individuals to be distinguished 

from low-earning, poorly educated individuals.  And finally, because the differences in 

spousal characteristics are likely to differ by marriage order, these models are estimated 

separately for first marriages and for higher order marriages. 

There are currently no cohort variables included in the mate-matching model.  

There is some research, however, that the assortative mating patterns with regard to 

education have changed over time.  This phenomenon is largely attributable to the 

increased educational attainment in the United States and the dependence on schools as 

marriage markets for nubile singles to find mates (Mare, 1991; Qian, 1998).  

                                                 
10 Again, while remarriage is specifically modeled in the context of CBOLT the results are excluded here.  
Technically, the method for forming remarried couples is exactly the same; substantively, the results are 
somewhat different in that the age, educational, and ALE earnings differentials are all much greater in 
higher-ordered marriage.  This result, based on the SIPP, is maintained by the modeling technique 
presented in detail below. 
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Consequently, the joint distribution of spousal characteristics in future unions is assumed 

to remain the same as those observed in the mid-1990s. 

This specification for modeling the likelihood of a match is much richer than the 

exponential distance function based on age and education used in DYNASIM.  This 

specification, however, is more parsimonious than CORSIM because it aligns on fewer 

dimensions.  Characteristics such as race, fertility, and labor force participation at the 

time of marriage, which are included in CORSIM, are not included in the models of 

union formation estimated in this paper because they do not have significant long-run 

implications on Social Security eligibility, benefit calculation, or claiming behavior. 

Age differentials are one of the most salient selection criteria in a mate-matching 

algorithm.  Empirical evidence from the SIPP suggests that there is a nonlinear 

relationship between spousal age differences and the likelihood of a match.  To 

accurately model this pattern, a combination of age splines and dummy variables are 

employed in the regression models.  For both first marriages and remarriages, dummy 

variables are used to capture the most likely age differences for marriages.  For first 

marriages, two dummy variables are used – one at an age difference equal to zero, and 

another at an age difference equal to one.  Spline variables in the first marriage model 

separate the sample by the following age differentials: less than -7 years, -6 to -1 years, 

+2 to +7 years, and greater than +7 years.   

The CBOLT microsimulation model attempts to differentiate between highly 

educated and poorly educated individuals.  Consequently, educational attainment is 

measured with a dummy variable that equals one if years of education are greater than or 

equal to 14, and zero otherwise.  This limitation may reduce the descriptive power of the 
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mate-matching process, and finer education detail is likely to be included in CBOLT in 

the future.  

To account for potential differences in the joint characteristics of spouses by 

marriage order, potential pairs data files are created separately for men’s first marriages 

and men’s higher order marriages.  In addition to estimating the models separately, each 

model has a dummy variable indicating whether the potential wife’s marriage is her first 

or not.   

Finally, a measure of earnings is also included in the model.  Empirical evidence 

from the SIPP indicates that spouses have a tendency to have relatively similar earnings 

levels.  To capture this economic homogamy, individuals are classified into sex-specific 

quintiles of average lifetime earnings (ALE), and the difference in quintiles is 

calculated.11 The difference is specified as husband’s ALE quintile minus wife’s ALE 

quintile and ranges from –4 to +4.  Both a linear and a squared term are included in the 

model to capture the quadratic relationship between ALE quintile difference and the 

likelihood of a match.  A quadratic specification assumes that the direction of the 

difference in the ALE quintiles is not important.  That is, marriages in which the man has 

higher earnings than the wife are just as likely or unlikely as marriages in which the man 

has lower earnings than the wife.   

To estimate the likelihood of a union between potential pairs, we estimate a 

logistic regression where the probability of union formation is a function of age, 

education, and earnings differences and marriage order.  To estimate this model, a 

family-level data file that contains both husband and wife characteristics is constructed.  

                                                 
11 A description of how average lifetime earnings (ALE) are calculated is available from the authors upon 
request. 
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For each man in the data file, the characteristics of the current real wife are compared 

with the characteristics of the n-1 other women in the data file of newlyweds.  Each 

comparison is output as a separate record.  This process creates a potential pairs analysis 

file with n-squared observations.  For every observation where the characteristics of a 

husband’s wife matches those of another newlywed wife, the dependent variable is set 

equal to one; otherwise, it is set equal to zero.  This convention produces a likelihood that 

bachelori would choose bachelorettej if all he was looking for were the set of 

characteristics he found in his real wife. 

Age, education, average lifetime earnings quintile, and marriage number are the 

characteristics used to define what a man seeks in a wife.  So assume a man entering his 

first marriage selects a 30-year-old woman who is also in her first marriage, has 16 years 

of education, and is in the third earnings quintile (relative to other women in the marriage 

pool).  For every observation in the potential pairs data file where this particular man is 

matched to a woman with those same characteristics (including his actual wife), the 

dependent variable is set equal to one.  This procedure increases the number of marriage 

events observed in the dependent variable to be greater than n in an n-squared data file.12     

 
Matching Algorithm 
 

The algorithm for mate matching starts with two pools of men and women to be 

matched in a given year.13  The first step involves randomly sorting each of the lists of 

men and women.  The next step cuts marriage candidates from their queue if the sizes of 

the pools are unequal.  Excess “marriageables” have their marital status returned to their 

                                                 
12 Among first marriages, there is a six-fold increase in the number of marriage events observed. 
13 Note that the mate-matching process described here applies only to nonimmigrants.  Immigrants in the 
microsimulation model go through a separate mate-matching process based solely on difference in age. 
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previous state and are sent back to the general population that will be at risk of marriage 

again in the following year.  This is the only point at which the marital transitions 

described above are over-written.  Removing excess individuals from the marriage 

queues creates two equally long, randomly sorted lists of men and women to be matched.   

The mate-matching process presented here is male centric – each male finds a 

mate before proceeding to the next male.  The low predictive power of the potential pairs 

model, however, suggests that a matching algorithm would take a very long time and may 

require several loops over the available females before a match is made.  To mitigate this 

inefficiency, the matching process calculates a normalization factor that is then used to 

adjust the predicted probabilities.   

For each man, a search across all remaining women calculates the normalization 

factor, which is set equal to the highest predicted probability of a match between him and 

all the potential women.  A second pass through the list of women is when matches are 

actually determined.  For each potential match, a random number is drawn and the 

predicted probability of the match is divided by the normalization factor.  If the adjusted 

predicted probability is greater than the random number, the match is made.  After the 

match is made, the female is removed from the list of females to be married that year and 

the algorithm proceeds to the next male to be married.  The same steps are repeated until 

all males have been matched to all females. 

The use of the normalization factor ensures that there will be a match made within 

the second cycle through the available women.  The match that has the highest likelihood 

in the first cycle will have a likelihood of matching equal to one in the second cycle.  

This produces a similar effect as the methodology implemented in DYNASIM.  In 

 
Draft: Please Do Not Quote 

20



 

DYNASIM, a male searches over a random selection of 10 available women.  If a match 

is not made on the first pass of those women, then the best match is assigned.  In the 

mate-matching technique employed here, however, the number of women that men 

search over is potentially the entire set of remaining unmarried women.  But because the 

location of the woman that would produce a “match with certainty” is randomly located 

in the queue, the actual number of women that each man searches over is also random.  

This technique creates a more randomized process than the one employed in DYNASIM, 

which arbitrarily limits the search to 10 women for each man before a match is made with 

certainty. 

 
Results 
 

The matches are based on regression results from men’s first and higher order 

marriage models that are presented separately in Table 4.  Almost all of the coefficients 

are highly statistically significant.  Many of the coefficients reveal expected correlations 

between husband and wife characteristics.  Not surprisingly, these results suggest 

homogamous matchings.  Individuals close in age, education, and historical earnings are 

more likely to marry than individuals who differ by those traits.  Similar parameter 

estimates in columns one and two suggest that the relationship between individual traits 

and union formation does not differ significantly by marriage order.  

Figures 7 through 9 present the results generated by those parameter estimates.  In 

each figure a comparison to the SIPP is included.  Figure 7 shows the distribution of 

simulated spousal age differences against the age differences of newlywed couples 

observed in the SIPP.  Percentage of marriages is plotted on the y-axis and spousal age 

difference is plotted on the x-axis.  The simulated values are based on the annual average 
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distribution of the differences between 2002 and 2076.  The distribution plotted for the 

SIPP is based on marriages that were formed between 1994 and 1996.   

One is immediately struck by how well the simulated distribution matches the 

benchmark distribution in Figure 7.  Because the SIPP has considerably fewer marriages 

than those produced over the 75-year projection period, there is slightly more variation in 

the distribution of the SIPP characteristics.  The figure shows that both the benchmark 

distribution and the simulated distribution have their peaks at +1.  This peak indicates 

that approximately 15 percent of men’s first marriages in the SIPP and over the simulated 

75-year projection period are to women that are one year younger.  The distribution is 

fairly even on either side of that peak and approximates a normal distribution. 

Figure 8 shows the distribution of education differences produced by the 

stochastic mate-matching technique discussed above.  This distribution indicates that 

there is strong homogamy by education, which is extensively supported in the research 

literature (Mare, 1991; Pencavel, 1998; Qian, 1998).  The distribution of education 

differences produced in the simulation closely matches the distribution observed in the 

SIPP.  In each, approximately three-quarters of the couples have the same education 

level, and regardless of which spouse has more education, the proportions with 

educational inequities are approximately equal.  

Figure 9 shows the simulated distribution of differences in average lifetime 

earnings quintiles between husbands and wives.  The distribution of each appears to be 

relatively symmetrically distributed, with more than a quarter of the couples marrying 

spouses that have the same relative economic ranking.   Fewer than 5 percent of the 

marriages in the simulation and in the SIPP have extreme differences between the 
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husbands’ and the wives’ economic status.  This figure shows that the stochastic mate-

matching approach produces slightly more marriages characterized by higher earning 

women (relative to their husbands) than the SIPP might suggest.  This pattern may be the 

result of future compositional changes in marriage markets.  As female earnings approach 

parity with male earnings, there are likely to be ramifications on the characteristics of the 

matches produced.  The overall congruency between the simulated differences in 

economic status and historically observed differences, however, is satisfactory.  Matching 

along this dimension is particularly important because Social Security spousal benefits 

and workers’ own benefits are affected by relative spousal earnings differentials. 

 
V. Divorce 
 

Unfortunately, not every match lasts forever and, for policy reasons, this matters.  

To capture divorces we apply several of the same techniques employed in determining 

marital transitions and extend any observed cohort effects forward.  All of the control 

variables used to model transitions into first marriage are also used to model the 

dissolution of marriages.  In addition, a nonlinear duration function is included in the 

model.   

Figures 10 and 11 show divorce rates by age and cohort for females and males, 

respectively.  For both sexes, divorce rates for cohorts born after 1950 are noticeably 

higher at younger ages, but those rates are approaching (or even below) the pre-1950 

cohort levels in the latest years for which the SIPP data are available.  There is also some 

evidence that divorce rates for some age groups in the 1960s cohort (25 to 35 years old) 

are actually lower than those of the 1950s cohort, signifying a reversal back toward the 

pre-1950 cohort rates.  
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Tables 5 and 6 show age-centered logit estimates for divorce rates of women and 

men, respectively; again, the importance of flexibility is underscored by the results.  

Education has mixed (but generally negative) effects on divorce, and income actually has 

different signs for the two sexes: lower lagged income is more likely to lead to divorce 

for men, but less likely to lead to divorce for women.  The positive or insignificant linear 

term and negative squared term for duration in many age groups are consistent with 

underlying divorce patterns: the probability of divorce initially rises after couples are 

married, but eventually starts to fall after they have been married a certain number of 

years (though again, the data indicate that this nonlinear effect itself varies with age).   

Strong cohort effects are as evident for divorce as they are for first marriage.  The 

cohort-dummy coefficient estimates in Tables 5 and 6 (also shown in Figures 12 and 13) 

clearly reflect the patterns in the overall divorce probabilities by age and cohort (Figures 

10 and 11).  Divorce rates are higher for both sexes at younger ages in the 1950s and 

1960s cohorts, but that effect disappears with age – there are no significant cohort 

differences in divorce probabilities for the two younger cohorts at the latest ages which 

can be observed, and thus one could speculate that divorce rates will match those for the 

pre-1950 cohorts at older ages.14  

The dramatic changes in marital transition rates indicated by the SIPP data across 

age, sex, and cohort groups cannot be explained away by underlying economic variables 

or changes in educational attainment.  Further, the changes are not easily captured by 

time trends, because the changes in transition rates often go in different directions at 

different ages, and even the trends that are in a given direction (for example, the drop in 
                                                 
14 This is consistent with SSA’s assumption of an unchanging central (age-adjusted) divorce rate during 
recent years and for the 75-year forecast horizon. 
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first marriage rates at young ages) seem to have changed slope, slowing in recent years.  

To make projections, one can do little more than speculate how those patterns will 

continue to unfurl for existing cohorts as they age and for future cohorts at all ages.  The 

implications of the choices made for extending the cohort terms are drawn out in the next 

section, which uses the estimated transition equations in a dynamic micro-simulation 

setting. 

 
VI. Microsimulation Results  
 
 The goal of this paper is to show how to generate a set of longitudinal marriage 

histories for a future sample of the population in a dynamic micro-simulation context.  

The sections above lay out the modeling process for projecting marital transitions in three 

distinct steps: entering into an annual marriage market, forming new couples through a 

mate-matching model, and dissolving unions.  This section describes how those pieces 

are brought together in the Congressional Budget Office Long Term (CBOLT) policy 

simulation model and provides some basic results of the marital projection over the 2000 

to 2075 period.10 The results depend on a variety of assumptions, including how transition 

probabilities will evolve in the future.  The illustrative calculations presented here show 

the implication of just one set of assumptions.  

  As mentioned above we employ our projection equations to estimate transitions 

for a period where the actual outcomes are known; in this case, we model the events 

between 1984 and 1998.  This approach allows us to determine if the transition equations 

have been properly programmed into the model and to ensure that the properties of our 

base data file (the CWHS) are consistent with the properties of the estimation data file 

(the SIPP).  Because slight systematic errors result by age, sex and transition type, we 
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derive a set of calibration factors from the historical simulation period (1984-1998) to use 

throughout the projection (2001-2076).  These calibrations are presented in Figures 14 

and 15.  The figures reveal that for most age and sex groups the adjustments to 

underlying transition probabilities vary by fewer than 5 percentage points for women and 

closer to 2 percentage points for men.  Because there are so few transition events at older 

ages, the estimates perform relatively poorly for those above 70 and the resulting 

calibration factors are somewhat larger.15   

The fact that the marital transition equations estimated here are able to capture the 

trends in aggregate marital distributions during the 1984 to 1998 period suggests that 

(setting aside uncertainty about how to extend the cohort terms) the model is capable of 

generating reasonable cross-sectional marital distributions.  That conclusion is borne out 

in Table 7 for the entire population, and in Figures 16 and 17 for people ages 62 to 67 for 

whom Social Security projections are particularly relevant.  At this point, we seek to 

ensure that our projections are reasonable.  To that end, we compare our cross-sectional 

micro-based results with actuarial projections from the Office of the Chief Actuary at the 

Social Security Administration (OCACT). 

Table 7 shows cross-sectional marital distributions over time in both the OCACT 

and CBOLT base case projections.  The most striking result is the similarity between the 

cross-section marital distributions over the 75-year period; but closer inspection shows a 

few small but systematic differences.16  For example, our approach consistently produces 

                                                 
15 Recall that marital transitions at these ages are also based on the AHEAD dataset which may differ more 
from the CWHS than does the SIPP.  
16 The similarities are even more striking when one considers that some of the processes used to project 
forward are very different.  For example, OCACT uses the distribution of “available” mates by age and sex 
to predict how many marriages will occur, while CBOLT does not.  For a thorough discussion of the 
OCACT actuarial projections, see Bell (1997). 
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fewer divorcees as a proportion of the population.  Also, by the end of the projection 

period, our estimates yield about the same percentage of married females but a slightly 

higher fraction of never married males.  The proportion widowed is slightly different, but 

that result stems from different mortality projections.       

At first glance the fact that the proportion of the population that never married is 

decreasing while the proportion married is increasing might appear to contradict the 

earlier story suggesting that fewer people are marrying.  However, because the age 

composition of the population is changing, measures of overall cross-sectional 

distribution by marital status do not accurately reflect the trends in either the OCACT or 

CBOLT projections.  Figures 16 and 17 isolate the trends in the cross-sectional marriage 

distribution for people ages 62 through 67.  That age group is interesting because, by this 

point in their lives, most of the cumulative effects of all three transitions modeled in this 

paper will probably be evident. These graphs suggest that the age-centered transition 

equations, combined with the minor adjustment factors derived from the historical 

simulations, generate individual behaviors that (when added up) approximately match the 

aggregate projections used by the Social Security actuaries.  Furthermore, these pictures 

support our hypothesis that the transition equations should generate a smooth transition to 

a new distribution of marital status outcomes.  

The CBOLT marital transition equations seem capable of generating reasonable 

cross-sectional patterns, but what about longitudinal outcomes?  In addition to classifying 

the right number of people as marrying, divorcing and remarrying the right number of 

people in any given year, it is important to ensure that these transitions occur at the 
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appropriate points in an individual’s life-cycle and that the distributions of the number of 

marriages and marital durations across cohorts are reasonable.   

The first bit of evidence that the longitudinal properties are satisfactory comes 

from looking at mean age at first marriage, shown in Figure 18. The solid lines represent 

Vital Statistics data covering the period between 1964 and 1990.  The CBOLT 

projections start in 1984 and extend through 2075, thus there is a six-year overlap in the 

graphs. Historically, the mean age at first marriage has been drifting upward, which is 

consistent with the cohort analysis presented in Figures 1 and 2.  Between 1984 and 

1990, the CBOLT historical simulation produced mean ages of first marriage very near 

those registered in the Vital Statistics. That similarity suggests that the model accurately 

predicts the timing of transitions into first marriage. While the trend of delaying first 

marriage is predicted to continue for some time, it eventually stabilizes at about age 28 

for both sexes, because once the 1980s cohort is through the relevant ages there are (by 

construction) no further cohort effects.  Note that the average age differential between the 

sexes shrinks over time, which is consistent with the extended positive cohort term for 

female first marriage probabilities (and negative term for males). 

The second observation on longitudinal outcomes comes from looking at the trend 

in marital duration at the time of divorce, as shown in Table 8.  This statistic is 

particularly interesting to Social Security analysts because of the duration requirement 

that governs benefit eligibility for divorced spouses. The CBOLT transition equations 

suggest that the typical duration of those marriages ending is divorces is not necessarily 

expected to fall. Again, at first glance, this result may seem counterintuitive, because of 

increased divorce rates. This trend is, however, supported both by actual data and 
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theoretical determinants of divorce. Vital Statistics reports a steady, albeit slight, increase 

in the duration of marriages ending in divorce.  This increase suggests a smaller 

proportion of very short marriages.  Divorce researchers have posited that as marriage 

ages drift up and cohabitation rates increase, the number of weak, official marriages will 

decline (Bumpass and Sweet, 1989). 

 
VII. Policy Implication and Conclusions 
 

There are ultimately many ways to tabulate longitudinal marriage outcomes in a 

dynamic micro-simulation context and thus draw conclusions about the model’s 

properties.  When trying to understand a model it sometimes helps to ask a policy 

question and see what the model offers.  For example, one interesting question about 

marriage in the Social Security context is, What will happen to the number of women 

eligible for spousal benefits?  That question is policy relevant insofar as elderly women 

have historically been vulnerable to high poverty rates, but recent trends in female labor 

force participation are poised to ameliorate the condition of future cohorts (Social 

Security Administration, 2000).17  The longitudinal marital techniques presented in this 

paper and implemented within the context of a larger micro simulation permit an 

illustration of how the distribution of marital outcomes varies across women with 

different lifetime income. 

Table 9 addresses the above question.  It presents the percentage of nonwidowed 

women ages 62 to 67 who are eligible to draw OAI spouse benefits.  The relevance of 

controlling for widowhood warrants a brief explanation. As male mortality rates decline, 

                                                 
17 Labor force participation is also forecast; currently it is modeled as a nested logit where participation is a 
function of age, sex, marital status, birth cohort, and beneficiary status. 
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the number of husbands increases, thus increasing overall spouse eligibility.  This 

“mortality improvement” confounds the effect of the retreat from marriage described 

above.  Once the marital status composition is controlled for, two trends stand out.  The 

first, going down a given column, suggests that women with lower lifetime earnings are 

more likely to be eligible for spouse benefits than are their richer counterparts.  In 2005, 

95% of women in the lowest lifetime earnings decile will be covered by their spouse’s 

earnings while only 77% of women in the highest decile will be comparably covered.  

This paper does not address whether these women stay married because they are likely 

low earners or if they are low earners because they know they are likely to stay married.   

The second trend, reading the rows across, suggests that the probability of a low-earning 

woman losing OAI spouse coverage is greater than the probability of a high-earning 

woman will losing that coverage.  The estimated change in coverage among the lowest 

decile of nonwidowed women is eight percentage points, from 95 percent in 2005 to 87 

percent by 2075.  The comparable decline for women in the highest decile is only five 

percentage points. 

 

 

 

 

 

 

 

 
 

 
Draft: Please Do Not Quote 

30



 

References 
 
Bell, Felicitie C.  Social Security Area Population Projections: 1997.  Actuarial Study 

#112, Social Security Administration, Office of the Chief Actuary.  SSA Pub. No. 
11-11553. (August 1997).   

 
Bouffard, Neal, Richard Easther, Tom Johnson, Richard J. Morrison, and Jan Vink.  

2001. “Matchmaker, Matchmaker, Make Me a Match.” Brazilian Electronic 
Journal of Economics. Vol. 4, No. 2. 

 
Bumpass, Larry L. and John A. Sweet. “National Estimates of Cohabitation,” 

Demography, vol. 26, no.4, pp. 615-625 (November 1989). 
 
Caldwell, Steven, Melissa Favreault, Alla Gantman, Jagadessh Gokhale, Thomas 

Johnson, and Laurence J. Kotlikoff.  “Social Security’s Treatment of Postwar 
Americans.”  NBER Working Paper #6603 (June 1998). 

 
Congressional Budget Office. Uncertainty in Social Security’s Long-Term Finances: A 

Stochastic Analysis. CBO Paper (December 2001). 
 
Easther, Richard and Jan Vink.  2000.  “A Stochastic Marriage Market for CORSIM.” 

Strategic Forecasting Technical Paper: 
 http://www.strategicforecasting.com/cgi-

bin/filedesc.cgi?filename=REJVmarriage_101000.ps&path=REasther_paper/ 
 
Frees, Edward W. (Jed). “Summary of Social Security Administration Projections of the 

OASDI System,” Working Paper for the 1999 Technical Panel on Assumptions 
and Methods, Social Security Advisory Board (December, 1999). 

 
Gale, D. and L.S. Shapely.  1962.  “College Admissions and the Stability of Marriage.” 

American Mathematical Monthly, 69:9-15. 
 
Goldstein, Joshua R.  “The Leveling of Divorce in the United States,” Demography, vol. 

36, no. 3, pp. 409-414 (August 1999). 
 
Gusfield, Dan and Robert W. Irving.  1989.  The Stable Marriage Problem: Structure and 

Algorithms. MIT Press: Cambridge, Mass. 
 

                        Harris, Amy Rehder, and John Sabelhaus.  “Projecting Longitudinal Earnings for Long-
Run Policy Analysis,” Congressional Budget Office Technical Paper, 2003-02 
Washington, D.C.  2003. 

 
Johnson, Tom.  2000. “Stable Marriages vs. Optimal Marriages.” Strategic Forecasting 

Technical Paper: 
http://www.strategicforecasting.com/cgi-
bin/filedesc.cgi?filename=TJstable_102400.ps&path=TJohnson_paper/ 

 
Draft: Please Do Not Quote 

31



 

Knuth, Donald E. 1976. Marriages Stables.  Les Presses de l’Université de Montréal: 
Montréal, Quebec, Canada. 

 
Kreider, Rose M. and Jason M. Fields.  Number, Timing, and Duration of Marriages and 

Divorces: Fall 1996.  Current Population Reports, P70-80. U.S. Census Bureau, 
Washington, D.C. (2001). 

 
Lillard, Lee, and Stan Panis.  “Demographic Projections.”  Paper presented at First 

Annual Joint Conference for the Retirement Research Consortium, “New 
Developments in Retirement Research” (May 20-21 1999). 

 
Lillard, Lee and Linda J. Waite. “Marriage and the Work and Earnings Careers of 

Spouses.” Paper presented at the Second Annual Joint Conference for the 
Retirement Research Consortium, “The Outlook for Retirement Income” (May 
17-18, 2000).  

 
Mare, Robert D. 1991. “Five Decades of Educational Assortative Mating.” American 

Sociological Review, 56:15-32. 
 
Morris, Martina and Mirjam Kretzschmar.  “A Microsimulation Study of the Effect of 

Concurrent Partnerships on the Spread of HIV in Uganda.” Population Research 
Institute, Working Paper 00-07.  University Park, PA (June, 2000). 

 
                        O’Harra, Josh, John Sabelhaus, and Michael Simspon.  “Overview of the Congressional 

Budget Office Long-Term (CBOLT) Policy Simulation Model,” Congressional 
Budget Office, Technical Paper 2004-1.  Washington, D.C. (2004). 

 
Orcutt, Guy H., Steven Caldwell, and Richard Wertheimer II.  1976.  Policy Exploration 

Through Microanalytic Simulation.  Washington, DC:  Urban Institute Press. 
 
Panis, Constantijn, and Lee Lillard. “Final Report: Near Term Model Development, Part 

II.” Rand Corporation, Santa Monica, Calif.  (August 1999). 
 
Pencavel, John. 1998. “Assortative Mating by Schooling and the Work Behavior of 

Wives and Husbands.” American Economic Review, 88:326-329. 
 
Perese, Kevin.  “Documentation for the Divorce Module.”  The Urban Institute, 

Washington, D.C. (1999). 
 
Peters, H. Elizabeth.  “Retrospective Versus Panel Data in Analyzing Lifecycle Events,” 

The Journal of Human Resources, vol. 23, no. 4, pp. 488-513 (Fall 1988). 
 
Preston, Samuel H., and John McDonald.  “The Incidence of Divorce Within Cohorts of 

American Marriages Contracted Since the Civil War.”  Demography, vol. 16, no. 
1, pp. 1-25 (February 1979). 

 

 
Draft: Please Do Not Quote 

32



 

Raley, R. Kelly. “Recent Trends and Differentials in Marriage and Cohabitation: The 
United States.”  The Ties that Bind, ed., Linda Waite.  New York: Aldine de 
Gruyter (2000): 19-39. 

 
Qian, Zhenchao. 1998. “Changes in Assortative Mating: The Impact of Age and 

Education, 1970 - 1990.” Demography, 35:279-292. 
 
Ruggles, Steven.  “The Rise of Divorce and Separation in the United States, 1880-1990.”  

Demography, vol. 34, no. 4, pp. 455-466 (November 1997). 
 
Roberts, M., C.L. Bryce, and D.C. Angus. “Predict Natural History by Survival or 

Disease Progression but not Both: Inconsistencies in Monte Carlo 
Microsimulation.”  

 
                        Schoen, Robert, and Robin M. Weinick.  “The Slowing Metabolism of Marriage: Figures 

from 1988 U.S. Marital Status Life Tables.”  Demography, vol. 30, no. 4, pp. 737-
746 (November 1993).  

 
Schoen, Robert, and Nicola Standish.  Footprints of Cohabitation: Results from Marital 

Status Life Tables for the U.S., 1995. Working Paper 00-12, Population Research 
Institute, University Park, Penn (September 2000).  

 
Smith, Creston M. “The Social Security Administration’s Continuous Work History 

Sample.”  Social Security Bulletin 52, 10 (October 1989): 20-28. 
 
Social Security Administration. Income of the Population 55 or Older, 2000.      

Washington, D.C. 
 
Walker, Agnes.  “Modelling Immigrants to Australia – to Enter a Dynamic 

Microsimulation Model.”  Presented at the International Conference on  
Combinatorics, Information Theory, and Statistics.  Portland, MA. (July 18-20, 
1997). 

 
Zedlewski, Sheila R.  1990.  “The Development of the Dynamic Simulation of Income     

Model (DYNASIM).”  In Gordon H. Lewis and Richard C. Michel, Editors.  
Microsimulation Techniques for Tax and Transfer Analysis.  Washington, DC:  
Urban Institute Press. 

 
 
 
 
 

 

 
Draft: Please Do Not Quote 

33



Table 1.
Comparison of Marital Transition Rates in SIPP 

                                   and Vital Statistics (NCHS) Data

Men Women

First Marriage Rate (Per 1,000 People)

SIPP (1995) 48.6 58.3
NCHS (1990) 47.0 57.7

Divorce Rate (Per 1,000 People)

SIPP (1995) 14.5 17.4
NCHS (1990) 19.2 18.7

Remarriage Rate (Per 1,000 People)

SIPP (1995) 73.2 38.9
NCHS (1990) 84.5 35.8

Note: SIPP = Survey of Income and Program Participation
       NCHS = National Center for Health Statistics



Figure 1: Female First Marriage Rates by Cohort and Age
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Figure 2: Male First Marriage Rates by Cohort and Age
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Figure 3: Female Cumulative First Marriage Probabilities by Cohort and Age
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Figure 4: Male Cumulative First Marriage Probabilities by Cohort and Age
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Table 2
Age-Centered Regression Coefficients, Female First Marriage

Age Coefficient on: 
Group Age Educ Income Cohort50 Cohort60 Cohort70 Constant

17 0.4078 -1.2836 0.0505 -0.1849 -0.7488 -1.3069 -8.8695
18 0.1984 -0.9851 0.0646 -0.2654 -0.7750 -1.2554 -5.3802
19 0.1180 -0.6605 0.0687 -0.3493 -0.7948 -1.1919 -4.0094
20 0.0659 -0.4325 0.0692 -0.4082 -0.7761 -1.1156 -3.1019
21 0.0132 -0.2548 0.0652 -0.4492 -0.7397 -1.0336 -2.0682
22 -0.0232 -0.0900 0.0618 -0.4828 -0.6770 -0.9533 -1.3510
23 -0.0532 0.0513 0.0564 -0.4876 -0.5919 -0.8607 -0.7396
24 -0.0727 0.1578 0.0496 -0.4645 -0.4916 -0.7593 -0.3318
25 -0.0838 0.2281 0.0432 -0.4024 -0.3601 -0.6494 -0.1167
26 -0.0840 0.2624 0.0390 -0.3151 -0.2245 -0.1754
27 -0.0793 0.2945 0.0362 -0.2254 -0.1026 -0.3651
28 -0.0835 0.3008 0.0346 -0.1457 -0.0056 -0.3108
29 -0.0940 0.3058 0.0337 -0.0877 0.0742 -0.0644
30 -0.1042 0.2852 0.0340 -0.0342 0.1274 0.2044
31 -0.1142 0.2674 0.0309 -0.0095 0.1480 0.5204
32 -0.1114 0.2229 0.0295 0.0093 0.1486 0.4556
33 -0.1080 0.1985 0.0257 0.0166 0.1408 0.3846
34 -0.1009 0.1816 0.0224 0.0332 0.1040 0.1813
35 -0.0910 0.1917 0.0157 0.0290 0.0497 -0.1097
36 -0.0733 0.1938 0.0135 0.0284 -0.7145
37 -0.0724 0.2457 0.0068 0.0432 -0.7342
38 -0.0822 0.2901 0.0034 0.0897 -0.3866
39 -0.0928 0.2675 0.0022 0.1479 0.0042
40 -0.1096 0.2058 0.0061 0.2174 0.6326
41 -0.0974 0.1301 0.0085 0.3348 0.1209
42 -0.0704 -0.0180 0.0147 0.4543 -1.0136
43 -0.0275 -0.2326 0.0202 0.5487 -2.8201
44 -0.0171 -0.4013 0.0197 0.6266 -3.2628
45 -0.0426 -0.5414 0.0165 0.6478 -2.0977
46 -0.1045 -0.7567 -0.0020 0.8374
47 -0.1456 -0.7762 -0.0145 2.8212
48 -0.1245 -0.6992 -0.0240 1.8959
49 -0.1060 -0.4757 -0.0248 0.9858
50 -0.0741 -0.4092 -0.0412 -0.5410
51 -0.0463 -0.3358 -0.0530 -1.8714
52 0.0067 -0.2539 -0.0525 -4.5669
53 0.0246 -0.2141 -0.0578 -5.5385
54 0.0383 -0.2991 -0.0756 -6.1978
55 -0.0063 -0.2090 -0.0763 -3.7633
56 -0.0514 -0.0590 -0.0762 -1.2904
57 -0.0860 -0.1108 -0.0827 0.6373
58 -0.1177 -0.2401 -0.0986 2.5872
59 -0.1025 -0.3964 -0.0975 1.7546
60 -0.0212 -0.6622 -0.0912 -3.0412

Note:  Coefficients in BOLD are significant at the 90% level.  



Table 3
Age-Centered Regression Coefficients, Male First Marriage

Age Coefficient on: 
Group Age Educ Income Cohort50 Cohort60 Cohort70 Constant

17 0.5626 -1.0578 0.0778 0.0000 -0.4407 -1.2186 -12.8694
18 0.3540 -0.8410 0.0891 -0.1243 -0.6510 -1.1558 -9.2769
19 0.2512 -0.5673 0.0890 -0.2672 -0.7204 -1.0829 -7.4000
20 0.1761 -0.3767 0.0859 -0.3591 -0.7265 -1.0163 -5.9724
21 0.1187 -0.2460 0.0793 -0.4191 -0.7196 -0.9445 -4.7703
22 0.0705 -0.1339 0.0740 -0.4628 -0.6910 -0.8824 -3.7333
23 0.0277 -0.0372 0.0680 -0.4944 -0.6512 -0.8263 -2.7730
24 -0.0062 0.0453 0.0626 -0.4967 -0.5944 -0.7504 -1.9937
25 -0.0316 0.1084 0.0585 -0.4842 -0.5204 -0.6805 -1.3986
26 -0.0497 0.1596 0.0550 -0.4417 -0.4370 -0.9735
27 -0.0590 0.2023 0.0534 -0.3964 -0.3607 -0.7759
28 -0.0639 0.2371 0.0537 -0.3281 -0.2780 -0.7048
29 -0.0717 0.2678 0.0535 -0.2575 -0.2134 -0.5385
30 -0.0765 0.2896 0.0522 -0.1731 -0.1607 -0.4452
31 -0.0782 0.3218 0.0486 -0.1033 -0.1307 -0.4086
32 -0.0866 0.3404 0.0429 -0.0179 -0.1105 -0.1495
33 -0.0899 0.3644 0.0379 0.0345 -0.1166 -0.0369
34 -0.0802 0.3993 0.0366 0.0468 -0.1225 -0.3564
35 -0.0741 0.4259 0.0359 0.0410 -0.1457 -0.5621
36 -0.0725 0.4104 0.0361 0.0257 -0.6189
37 -0.0762 0.4474 0.0416 -0.0314 -0.5162
38 -0.0905 0.4715 0.0453 -0.0809 0.0098
39 -0.0990 0.4521 0.0444 -0.0867 0.3427
40 -0.1062 0.4707 0.0418 -0.1204 0.6351
41 -0.1299 0.4741 0.0416 -0.1419 1.6004
42 -0.1231 0.3462 0.0424 -0.1272 1.3771
43 -0.0757 0.1881 0.0495 -0.0826 -0.6233
44 -0.0359 0.1113 0.0599 -0.0970 -2.4015
45 -0.0104 -0.0477 0.0806 -0.0547 -3.6654
46 0.0142 -0.1178 0.0967 -4.8912
47 -0.0149 -0.1106 0.1082 -3.6658
48 -0.0432 -0.0940 0.1066 -2.3195
49 -0.0738 -0.1186 0.0996 -0.7745
50 -0.0903 -0.0423 0.0837 0.1637
51 -0.0863 -0.0259 0.0619 0.0935
52 -0.0860 0.0766 0.0359 0.2574
53 -0.1133 0.1095 0.0175 1.7711
54 -0.1305 0.2696 0.0056 2.7245
55 -0.1141 0.2572 -0.0050 1.9071
56 -0.1018 0.2967 0.0001 1.2352
57 -0.0114 0.3009 0.0059 -3.9150
58 0.0047 0.4180 0.0114 -4.9085
59 -0.0534 0.3186 0.0047 -1.5017
60 -0.1370 0.4306 0.0080 3.3958

Note:  Coefficients in BOLD are significant at the 90% level.  



Figure 5: Residual Cohort Effects, Female First Marriage
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Figure 6: Residual Cohort Effects, Male First Marriage
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Intercept -3.953 *
(0.070)

Wife's marriage number 0.973 *
(0.060)

Wife has higher education -1.147 *
(0.043)

Wife has lower education -1.104 *
(0.046)

ALE quintile difference1 -0.062 *
(0.008)

ALE quintile difference squared1 -0.047 *
(0.004)

Age difference less than -6 spline 0.390 *
(0.016)

Age difference -6 to -1 spline 0.570 *
(0.020)

Age difference equal 0 dummy -0.267 *
(0.053)

Age difference equal 1 dummy -0.120
(0.051)

Age difference 2 to 7 spline -0.216 *
(0.010)

Age difference greater than 7 spline -0.238 *
(0.007)

N 695,556
-2 Log Likelihood 57,674
Standard errors in parentheses,  * = p < 0.01
1) Average Lifetime Earnings (ALE) quintile is calculated as
    husband's ALE quintile minus wife's ALE.

Men's First 
Marriages

Table 4.
Potential Pairs Logistic Model Results



 

Figure 7: Distribution of Differences in Age Among Men's First Marriages
Simulated Marriages 2002-2076 and SIPP Marriages 1994-1996
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Figure 8: Distribution of Differences in Education Among Men's First Marriages,
Simulated Marriages 2002-2076 and SIPP Marriages 1994-1996
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Figure 9: Distribution of Differences in Earnings Quintiles Among Men's First Marriages,
Simulated Marriages 2002-2076 and SIPP Marriages 1994-1996
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Figure 10: Female Divorce Rates by Cohort and Age
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Source: Congressional Budget Office based on data from the 1996 Survey of Income and Program Participation.



Figure 11: Male Divorce Rates by Cohort and Age

0

1

2

3

4

5

6

7

8

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

Age

Percent Divorcing

Before 1950

1950s

1960s

Source: Congressional Budget Office based on the data from the 1996 Survey of Income and Program Participation.



                  Table 5.
                             Age-Centered Regression Coefficients, Female Divorce

Age     Coefficient on: 
Group Age Educ Duration Durat Sq Income Prev Marr Cohort50 Cohort60 Constant

17 0.0543 0.2758 0.0000 0.0161 0.0604 0.4342 0.9722 -5.1091
18 -0.0097 0.1493 -0.1871 0.1004 0.0704 0.6378 0.9239 -3.9443
19 -0.1305 0.1641 0.2359 0.0066 0.0897 0.7421 1.0766 -2.2157
20 -0.1777 0.1270 0.3546 -0.0145 0.0897 0.7757 1.1460 -1.4277
21 -0.1821 0.1042 0.3838 -0.0198 0.0899 0.7881 1.1581 -1.3668
22 -0.1757 0.0708 0.3707 -0.0198 0.0874 0.7996 1.1335 -1.4377
23 -0.1648 0.0306 0.3462 -0.0186 0.0848 0.7830 1.0674 -1.5608
24 -0.1498 0.0016 0.3161 -0.0172 0.0837 0.7604 0.9687 -1.7622
25 -0.1491 0.0201 0.3012 -0.0154 0.0859 0.6304 0.7155 0.8218 -1.7486
26 -0.1334 0.0049 0.2592 -0.0127 0.0863 0.6340 0.6721 0.6813 -1.9579
27 -0.1215 -0.0114 0.2108 -0.0096 0.0868 0.6064 0.6191 0.5448 -2.0599
28 -0.1048 -0.0300 0.1719 -0.0075 0.0882 0.6035 0.5699 0.4142 -2.3213
29 -0.0861 -0.0505 0.1336 -0.0055 0.0874 0.6136 0.5154 0.3073 -2.6473
30 -0.0694 -0.0846 0.1041 -0.0041 0.0871 0.6158 0.4697 0.2288 -2.9740
31 -0.0523 -0.1223 0.0840 -0.0032 0.0861 0.6164 0.4390 0.1573 -3.3570
32 -0.0443 -0.1410 0.0744 -0.0030 0.0865 0.6207 0.3988 0.0999 -3.5204
33 -0.0398 -0.1331 0.0554 -0.0021 0.0857 0.6185 0.3712 0.0637 -3.5659
34 -0.0390 -0.1116 0.0522 -0.0020 0.0863 0.6229 0.3536 0.0199 -3.5703
35 -0.0485 -0.0593 0.0420 -0.0016 0.0840 0.6180 0.3309 -0.0434 -3.1774
36 -0.0574 0.0327 0.0408 -0.0016 0.0830 0.5967 0.2954 -2.8440
37 -0.0650 0.0796 0.0338 -0.0014 0.0767 0.6298 0.2938 -2.5039
38 -0.0726 0.1074 0.0254 -0.0011 0.0725 0.6581 0.2656 -2.1389
39 -0.0761 0.1306 0.0132 -0.0007 0.0674 0.6709 0.2280 -1.8909
40 -0.0713 0.1437 0.0075 -0.0006 0.0637 0.6954 0.2096 -2.0240
41 -0.0629 0.1395 -0.0004 -0.0003 0.0621 0.6993 0.1824 -2.2789
42 -0.0495 0.1493 -0.0070 0.0000 0.0638 0.7239 0.1190 -2.8274
43 -0.0432 0.1678 -0.0042 -0.0001 0.0627 0.7327 0.1014 -3.1162
44 -0.0409 0.2085 -0.0008 -0.0003 0.0621 0.7434 0.0841 -3.2389
45 -0.0482 0.2429 0.0002 -0.0004 0.0637 0.7490 -0.0144 -2.9070
46 -0.0444 0.2635 0.0116 -0.0008 0.0657 0.7489 -3.1332
47 -0.0434 0.2572 0.0120 -0.0009 0.0605 0.7521 -3.0950
48 -0.0532 0.2318 0.0109 -0.0010 0.0593 0.7411 -2.5465
49 -0.0532 0.1314 0.0173 -0.0013 0.0618 0.7368 -2.5271
50 -0.0380 0.0346 0.0281 -0.0017 0.0614 0.7013 -3.2604
51 -0.0361 -0.0345 0.0346 -0.0020 0.0619 0.6379 -3.3134
52 -0.0378 -0.0838 0.0491 -0.0024 0.0676 0.5849 -3.2983
53 -0.0458 -0.1341 0.0651 -0.0028 0.0701 0.5816 -3.0124
54 -0.0452 -0.0628 0.0671 -0.0028 0.0663 0.5461 -3.0347
55 -0.0561 0.0207 0.0552 -0.0025 0.0600 0.5374 -2.3724
56 -0.0573 0.1384 0.0383 -0.0020 0.0581 0.5230 -2.1941
57 -0.0578 0.2248 0.0137 -0.0014 0.0482 0.4981 -1.9207
58 -0.0377 0.3774 -0.0189 -0.0008 0.0353 0.4333 -2.6780
59 -0.0024 0.4647 -0.0297 -0.0006 0.0341 0.4387 -4.6634
60 0.0097 0.4895 -0.0185 -0.0009 0.0422 0.4158 -5.4251
61 0.0035 0.5604 0.0014 -0.0014 0.0405 0.4452 -5.2106
62 -0.0120 0.6306 0.0363 -0.0023 0.0461 0.4314 -4.5039
63 -0.0098 0.7281 0.0748 -0.0031 0.0631 0.4435 -5.0705
64 -0.0727 0.7160 0.0832 -0.0033 0.0611 0.3757 -1.0626
65 -0.0958 0.6852 0.0845 -0.0033 0.0575 0.4366 0.3086
66 -0.0994 0.5004 0.0579 -0.0026 0.0657 0.4600 0.7356
67 -0.0379 0.2292 0.0042 -0.0012 0.0912 0.6709 -3.2858
68 0.0464 -0.1925 -0.0345 -0.0002 0.1144 0.8795 -9.0234
69 0.0862 0.1137 -0.0368 0.0000 0.1551 1.0658 -12.2533
70 0.0605 0.3973 -0.0539 0.0004 0.2015 1.0900 -10.5904

Note:  Coefficients in BOLD are significant at the 90 percent level.  



                  Table 6.
                               Age-Centered Regression Coefficients, Male Divorce

Age     Coefficient on: 
Group Age Educ. Duration Durat Sq Income Prev Marr Cohort50 Cohort60 Constant

17 -1.1723 -1.6886 0.1394 0.1394 0.1472 0.8718 1.1750 15.5299
18 -0.1229 0.1031 -1.0627 0.3932 0.0781 0.6675 1.1775 -1.6450
19 -0.1372 0.2257 -0.0149 0.0898 0.0383 0.6617 1.1010 -1.6426
20 -0.2106 0.1728 0.2063 0.0271 0.0201 0.7039 1.0119 -0.0718
21 -0.2233 0.1190 0.2824 0.0090 0.0154 0.7164 0.9764 0.2337
22 -0.2221 0.0498 0.3217 -0.0028 0.0111 0.7339 0.9544 0.2774
23 -0.2164 -0.0224 0.3470 -0.0103 0.0065 0.7311 0.8917 0.2459
24 -0.2004 -0.1067 0.3411 -0.0131 0.0022 0.7155 0.8311 0.0256
25 -0.1886 -0.1449 0.3399 -0.0146 -0.0017 0.5890 0.6988 0.7637 -0.1720
26 -0.1657 -0.1796 0.3101 -0.0136 -0.0082 0.6695 0.6650 0.6845 -0.5560
27 -0.1473 -0.1910 0.2883 -0.0128 -0.0142 0.7271 0.6302 0.5915 -0.8715
28 -0.1324 -0.1951 0.2612 -0.0113 -0.0181 0.7615 0.6056 0.5070 -1.1242
29 -0.1174 -0.1814 0.2322 -0.0098 -0.0210 0.7695 0.5883 0.4096 -1.3952
30 -0.1074 -0.1824 0.2012 -0.0082 -0.0231 0.7497 0.5443 0.2995 -1.5148
31 -0.0967 -0.1944 0.1688 -0.0067 -0.0222 0.6919 0.5297 0.2096 -1.6719
32 -0.0838 -0.2185 0.1399 -0.0055 -0.0201 0.6283 0.5052 0.1259 -1.9149
33 -0.0705 -0.2334 0.1071 -0.0041 -0.0191 0.5853 0.4727 0.0527 -2.1666
34 -0.0611 -0.2592 0.0861 -0.0034 -0.0172 0.5722 0.4298 -0.0044 -2.3554
35 -0.0523 -0.2633 0.0700 -0.0028 -0.0150 0.5757 0.4151 -0.0512 -2.5707
36 -0.0492 -0.2357 0.0658 -0.0027 -0.0145 0.5836 0.3743 -2.6462
37 -0.0453 -0.2078 0.0551 -0.0023 -0.0169 0.6282 0.3196 -2.7123
38 -0.0426 -0.1799 0.0476 -0.0020 -0.0189 0.6404 0.2534 -2.7369
39 -0.0454 -0.1269 0.0386 -0.0017 -0.0227 0.6350 0.1962 -2.5360
40 -0.0442 -0.0915 0.0383 -0.0017 -0.0262 0.6566 0.0997 -2.5428
41 -0.0414 -0.0352 0.0314 -0.0015 -0.0296 0.6637 0.0051 -2.5746
42 -0.0394 0.0052 0.0244 -0.0013 -0.0314 0.6574 -0.0674 -2.5969
43 -0.0326 0.0604 0.0175 -0.0011 -0.0326 0.6647 -0.1432 -2.8334
44 -0.0204 0.0874 0.0202 -0.0013 -0.0314 0.6681 -0.2542 -3.3595
45 -0.0264 0.1461 0.0139 -0.0012 -0.0307 0.6392 -0.3389 -3.0313
46 -0.0346 0.1865 0.0074 -0.0010 -0.0275 0.5919 -2.6187
47 -0.0566 0.1652 0.0037 -0.0011 -0.0265 0.5580 -1.5193
48 -0.0852 0.0948 0.0039 -0.0012 -0.0285 0.5429 -0.0944
49 -0.1000 0.0356 -0.0045 -0.0010 -0.0324 0.5155 0.7462
50 -0.0899 -0.0500 -0.0066 -0.0010 -0.0383 0.4857 0.3825
51 -0.0648 -0.1122 -0.0007 -0.0012 -0.0467 0.4545 -0.7630
52 -0.0390 -0.1313 0.0036 -0.0014 -0.0527 0.4397 -2.0632
53 -0.0032 -0.0422 0.0063 -0.0015 -0.0524 0.3654 -3.8923
54 0.0109 0.0588 0.0148 -0.0018 -0.0516 0.3155 -4.6891
55 0.0163 0.0940 0.0277 -0.0021 -0.0499 0.2724 -5.0848
56 0.0067 0.1473 0.0347 -0.0022 -0.0448 0.2560 -4.6894
57 -0.0215 0.1545 0.0482 -0.0025 -0.0413 0.2417 -3.2256
58 -0.0655 0.0909 0.0625 -0.0027 -0.0395 0.2495 -0.9003
59 -0.0745 -0.0350 0.0861 -0.0033 -0.0368 0.2233 -0.5297
60 -0.0760 -0.0742 0.0876 -0.0032 -0.0302 0.2632 -0.5605
61 -0.0587 -0.1367 0.0876 -0.0031 -0.0269 0.2939 -1.6836
62 -0.0252 -0.0746 0.0789 -0.0028 -0.0233 0.3129 -3.8189
63 -0.0451 -0.0093 0.0630 -0.0024 -0.0257 0.3749 -2.5349
64 -0.0660 0.1021 0.0286 -0.0014 -0.0245 0.5238 -1.2080
65 -0.1109 0.1424 0.0196 -0.0012 -0.0334 0.5892 1.6943
66 -0.1260 0.2046 0.0298 -0.0014 -0.0319 0.6737 2.4686
67 -0.1419 0.1018 0.0324 -0.0014 -0.0249 0.8168 3.3959
68 -0.0786 0.1695 0.0278 -0.0013 -0.0053 0.9273 -0.9322
69 -0.0690 0.1962 0.0364 -0.0015 0.0262 1.0116 -1.8784
70 -0.0489 0.2294 0.0282 -0.0013 0.0802 1.0093 -3.4575

Note:  Coefficients in BOLD are significant at the 90 percent level.  



Figure 12: Residual Cohort Effects, Female Divorce
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Figure 13: Residual Cohort Effects, Male Divorce
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Figure 14: Historical Simulation Calibration Factors, Females
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 Figure 15: Historical Simulation Calibration Factors, Males 
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Figure 16: Marital Status for Females Ages 62-67, by Year

0

10

20

30

40

50

60

70

80

90

100

19
83

19
86

19
89

19
92

19
95

19
98

20
01

20
04

20
07

20
10

20
13

20
16

20
19

20
22

20
25

20
28

20
31

20
34

20
37

20
40

20
43

20
46

20
49

20
52

20
55

20
58

20
61

20
64

20
67

20
70

20
73

Year

Percent

OCACT - Never MarriedCBOLT - Never Married

CBOLT - DivorcedOCACT - Divorced

CBOLT - Married or Widowed

OCACT - Married or Widowed



Figure 17: Marital Status for Males Ages 62-67, by Year
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                           Table 7: Marital Status Distributions Over Time, by Sex and Year

         Social Security Administration (OCACT)  Congressional Budget Office Long-Term (CBOLT) Model

Never Married Married Divorced Widowed Never Married Married Divorced Widowed

Overall Population 
2001 43% 44% 8% 5% 44% 44% 7% 6%
2025 41% 45% 9% 5% 42% 46% 6% 6%
2050 40% 45% 9% 6% 41% 46% 6% 7%
2075 40% 46% 9% 6% 40% 47% 6% 7%

Female Population
2001 40% 43% 8% 8% 41% 43% 8% 9%
2025 38% 45% 10% 8% 38% 46% 7% 9%
2050 37% 45% 10% 9% 36% 47% 7% 10%
2075 36% 46% 10% 8% 35% 48% 7% 10%

Male Population
2001 47% 45% 7% 2% 47% 45% 6% 3%
2025 45% 46% 7% 2% 46% 46% 5% 3%
2050 44% 46% 7% 3% 46% 45% 5% 4%
2075 43% 46% 7% 3% 45% 46% 5% 4%

Source: Authors' calculations based on SSA Area Population Projections 1941 to 2080, Office of the Chief Actuary. 



Figure 18: Mean Age At First Marriage
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Table 8.
Distribution of Marital Durations at Time of Divorce,

     by Number of Years Married

0 1 to 4 5 to 9 10 to14 15 or More

NCHS - Actual
1990 3% 32% 28% 15% 22%

Projected
2005 9% 30% 24% 16% 23%

2015 8% 28% 24% 15% 27%

2025 6% 31% 27% 14% 23%

2035 6% 30% 25% 15% 24%

2045 7% 28% 28% 13% 25%

2055 6% 30% 25% 14% 23%

2065 8% 31% 22% 14% 26%

2075 7% 29% 26% 13% 26%



Table 9.
 Percentage of Nonwidowed Women Ages 62-67 Eligible
 for OAI Spouse Benefits,  by Lifetime Earnings Deciles

Year

2005 2015 2025 2035 2045 2055 2065 2075
Earnings Decile

1 95% 88% 88% 86% 83% 86% 85% 87%
2 95% 89% 87% 87% 82% 87% 88% 89%
3 90% 89% 85% 89% 84% 88% 89% 87%
4 90% 83% 83% 86% 83% 85% 85% 87%
5 86% 80% 83% 85% 79% 84% 85% 85%
6 88% 83% 83% 82% 80% 82% 84% 83%
7 80% 81% 82% 79% 74% 80% 83% 81%
8 84% 80% 77% 78% 74% 77% 78% 77%
9 81% 77% 75% 71% 69% 76% 77% 78%
10 77% 75% 72% 64% 65% 68% 70% 72%

All 87% 83% 81% 81% 77% 81% 82% 83%
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