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SOME NEW DEMOGRAPHIC EQUATIONS IN SURVIVAL ANALYSIS UNDER 

GENERALIZED POPULATION MODEL: Applications to Swedish and Indian  

Census Age-data for Estimating Adult Mortality  

 

By 

 

SUBRATA LAHIRI 

 
[Abstract]:   

 This paper presents various formulas in estimating "10-year conventional and cumulative 

life table survival ratios", defined by the following ratios -- 5Lx+10/5Lx and Tx+10/Tx  in life table 

terminology respectively, from two enumerations (not necessarily multiple of 5 years apart) of any 

closed population. The population under study should follow a generalized population model, and 

the age-specific growth curve should resemble closely to a second-degree polynomial. Attempts have 

also been made to establish algebraic relationships between census survival ratios (conventional and 

cumulative) and the corresponding life table survival ratios under GPM. The formulas, developed 

here, have been applied to a sufficiently accurate age-data of Sweden followed by those of India 

subject to serious response biases in age reporting. The proposed technique, which works quit well 

in assessing adult mortality even when the age-data are distorted due to age misreporting, may be 

extended for population projection and other demographic estimations. 

------------------------------------------------- 

Key Words: Census survival ratios, Life table survival ratios, Destable population, and                        

adult mortality. 
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Introduction: 

 

In census survivorship approach for life table construction from two enumerations (10 or 5 

years apart) of a closed population, it is conventionally assumed that the intercensal survivorship 

ratios are equal to the corresponding life table survival ratios that depict the average mortality 

experience during the intercensal period of the population under study. It has been shown in this 

paper that such a equality holds true only when the population under study is either stationary or 

stable. A general relationship, applicable to any closed population (destabilized), between 10-year 

(conventional) census survival ratios (10-CSRs) and its associated 10-year (conventional) life table 

survival ratios (10-LSRS) has also been established under the assumption that the population under 

study follows a generalized population model of age-structure, and the intercensal period is ten years. 

A general formula has also been proposed for estimating 10-LSRs from the age data of two 

consecutive censuses for any intercensal interval (not necessarily integral multiple of 5). 

 

In countries where census age-records are seriously affected due to age-misstatements, the 

conventional census survival ratios behave rather erratically and at times even exceed unity, which is 

absurd in a closed population. The use of cumulative census survival ratios, based on cumulated 

census age-returns beyond certain quinquennial ages as suggested by Coale and Demeny (United 

Nations, 1967), reduces such irregularities to a large extent. Thus, a general formula has also been 

developed in this paper in estimating ‘10-year cumulative life table survival ratios’ (10-cum-LSRs), 

defined by the ratio Tx+10/Tx in a life table terminology, from the corresponding ‘10-year cumulative 

census survival ratios’ (10-cum-CSRs) under the assumption of generalized population model of 

age-structure applicable to any closed population having intercensal period of ten years. A general 

equation has also been derived for estimating 10-cum-LSRs from two consecutive census age- 

returns of a population having intercensal period other than 10 years not necessarily multiple of 5.
1
 

 

                         

1
 In another study of the author (Lahiri, 2002) it has been shown how these estimated 10-cum-LSRs as 

mentioned above can be used in locating an appropriate life table under a given model mortality pattern. It 

is worth noting that such a procedure does not require in projecting the initial population by age as 

enumerated in a particular census up to the next census date taken 5 or 10 years later than the former in 

contrast to the method proposed by Coale and Demeny (United Nations, 1967).  
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Methodology: 

Notations used 

 

In addition to the standard life table notations, the following notations will be used for the 

purpose of establishing the requisite relationship between population survival ratios (PSRs) and its 

associated life table survival ratios (LSRs). The letters ‘P’ and ‘N’ are used to denote the number of 

persons related to a census enumeration and a mathematical model respectively. In subsequent 

discussions, the term ‘age x’ represents a discrete (integral) variable for a census but it stands for a 

continuous one in a mathematical model. The symbol t signifies the time variable--when t = z it 

stands for the first census date, and t = z + 10 represents the second census date. Let, 

 

    Px(t)   : Number of (enumerated) persons at age x  l.b.d according to the census at time  t  

  (t=z or z +10); 

 

5Px(t)  : Number of persons in the age group (x, x+4) according to the census at time t    

(t=z or z +10); 

 

Px+(t) : Number of persons at ages ‘x & above’ according to the census at time t  

(t=z or z +10); 

 

  P(t) : Total number of persons according to the census at time t (t=z or z +10). 

 

 r, 5rx & rx+   : Average annual exponential growth rates during the decade (z, z+10) for the whole 

            population, population in the age-group (x, x+4), and sub population aged x & 

            above respectively. 

 

Nx(t) : The number of persons at exact age x at time t according to the assumed  

                        mathematical population model of age-structure of the population under study.  

                        [Alternatively, Nx(t) may be treated as the frequency of the population model  

                        at time  t such that the number of persons between the exact ages x and x+Δx  

                        at time t, Δx being the width of an infinitesimally small interval, is given by  

Nx(t).Δx]. 

 

5Nx(t) : The number of persons between the exact ages x and x+5 at time t, according  

                         to the assumed population model and is given by:   

dy)t(N=(t)N y

5+x

x

x5 ∫∫∫∫  
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Nx+(t) : The number of persons aged x and above at time t in the assumed population 

   model and is given by:   

     ,dy)t(N=(t)N y

w

x

+x ∫∫∫∫ where ‘w’ is the maximum age that could be attained.  

rx(t)   : Instantaneous rate of growth of persons aged x at time t  according to the                     

       population model and is defined by, 

dt

)t(dN
 

)t(N

1
 = (t)r x

x

x  

10CSx : 10-year census survival ratio (10-CSR) between the five-year age group (x, x+4) at 

time t=z and the age-group (x+10, x+14) at time t=z+10, and   defined  by the ratio 

5Px+10(z+10)/5Px(z) which will be called, henceforth, in short, 10-CSR at age x. 

 

10PSx : Ten-year population survival ratio (10-PSR) between the five-year age-interval 

(x, x+5) at time t=z and the age-interval (x+10, x+15) at time t=z+10, and defined 

by the ratio 5Nx+10 (z+10)/5Nx(z) which will be called, henceforth, 10-PSR at age x. 

 

10LSx: Ten-year life table survival ratio (10-LSR) between the five-year age-intervals 

(x, x+5) and (x+10, x+15) in the life table (or stationary) population associated with 

the population under study during the intercensal period (z, z+10), and defined by the 

ratio 5Lx+10/5Lx in life table terminology. In short, the above ratio will be called, 

henceforth, 10-LSR at age x. 

 

          10CS′′′′x+: Ten-year cumulative census survival ratio (10-cum-CSR) between the ‘ages 

                        x & above’ at time t=z and the ‘ages x+10 & above’ at time t=z+10 and defined 

                        by the ratio P(x+10)+ (z+10)/Px+ (z), and in short the above ratio will be called,  

henceforth, 10-cum-CSR at age x. 

 

             10PS′′′′x+:   Ten-year cumulative population survival ratio (10-cum-PSR) between the  

                      ‘ages x & above’ at time t = z and the ‘ages x+10 & above’ at time t = z+10, 

                       and defined by the ratio N(x+10)+(z+10)/Nx+(z) which will be called, henceforth, 

                       10-cum-PSR at age x. 

 

            10LS′′′′x+:   Ten-year cumulative life table survival ratio (10-cum-LSR) between ‘ages 

                       x & above’ and ‘ages x+10 & above’ in the life table (or stationary) population 

                       associated with the population under study during the intercensal period (z, z+10), 

                       and defined by the ratio Tx+10/Tx in life table terminology. In short,  the above ratio  

will be called, henceforth, 10-cum-LSR at age x. 
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Relationship Between ‘10-PSR’ and ‘10-LSR’ at age ‘a’ in a Destabilized Population Model 

 

According to a destabilized or generalized population model which is applicable to any 

population, the function Nx(t) describing the age-structure of any population at time t is given by the 

following equation (Bennett and Horiuchi, 1981; and see also, Preston and Coale, 1982): 

           t)p(x; dy (t)r- exp B(t) = (t)N y

x

0

x














∫∫∫∫ ……….(1)  

where,   B(t) : Number of births at time t;  ry(t) : Instantaneous rate of growth of persons aged            

         y at time t; 

 

p(x;t)  : Probability of surviving from birth to exact age x according to the stationary  

                         population  associated with the destabilized population at time t and in life table  

                         terminology p(x;t) = lx(t)/l0(t), where lx(t) denotes the number of survivors at  

                         exact age x out of the initial birth cohort l0 in the stationary population.  

 

Given the age-distribution of persons of a destable population defined by the equation (1) at 

two points of time, ten-years apart, viz., the census dates z and z+10, our aim is to find a formula for 

estimating 10-LSR at various quinquennial ages x=a, a+5, a+10, etc., from the corresponding 

values
2
 of 10-PSR. The set of estimates of 10-LSRs, so obtained, depicts an average mortality 

experience of the population under study during the period (z, z+10) and thus may be treated as that 

related approximately to the time z+5, the mid-point of the period (z, z+10). Now, using the life table 

at time z+5, based on the set of 10-LSRs values, which provides the value p
*
(x; z+5), the average 

survival probability from birth to age x during the decade (z, z+10), one can find the analytical 

expression for the number of persons aged x at time z+5 in a destabilized population through the 

following equation: 

  (2)-----5)+(zldy  5)+(zr  -exp5)+(z A5)+(zN *

xy

x

0

*

y ∗∗∗∗







∗∗∗∗≈≈≈≈ ∫∫∫∫∗∗∗∗  

where, A
*
(z+5) = B

*
(z+5) / l

*
0(z+5), and B

*
(z+5) stands for the average annual number of births 

during the intercensal period (z, z+10) related approximately to the time z+5, the mid-point of the 

                         

2
 The observed value of ‘10-PSR at x’ can be obtained through ‘10-CSR at age x’ from the two census 

enumerations, ten years apart. 
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period (z, z+10). It can be shown that )5z(ry ++++  is nothing but the average annual exponential rate of 

growth of persons aged y, and *
xl (z+5) represents the average survival function at age x during the 

period (z, z+10). 

 

For the sake of simplicity in presenting various formulas, the ‘argument’ z+5 within the 

parenthesis and the superscript -- asterisk sign (*) attached to various notations will be omitted, 

henceforth, in the subsequent development of different formulas. However, all the functions 

subsequently used here pertain approximately to the time z+5 as an average experience during the 

decade (z, z+10) unless otherwise mentioned specifically. 

 

Integrating both sides of (2) in the age interval (a, a+5) and using the first mean value 

theorem of Integral Calculus, we get, 

          a5y

2.5+a

o

a5 Ldy r  -exp ANor  ∗∗∗∗













∗∗∗∗≈≈≈≈ ∫∫∫∫  ……….. (3),   

 definition  bydx     l    =  L   where x

5+a

a

a5 ∫∫∫∫  …………….(3.1). 

Now, using (3), one may easily find that 

5  afor    ,LS*dyr- exp 
N

N
 10 ay

+12.5a

2.5+a
a5

10a5 ≥≥≥≥













≈≈≈≈ ∫∫∫∫++++  ……… (4). 

The notation 10LSa (defined by the ratio 5La+10 / 5La in life table terminology) used in the R.H.S of 

(4) stands for ten-year (conventional) life table survival ratio (10-LSR) at age a related to the time 

z+5 that depicts the average survival experience during the decade (z, z+10). It may be noted that the 

ratio in L.H.S. of (4) is related to the time z+5. Thus the ratio 5Na+10 /5Na in the L.H.S. of (4) is not 

same as the 10-PSR at age a (10PSa) during the decade (z, z+10), as the latter (10-PSR) is defined by 

the ratio 5Na+10 (z+10)/5Na(z). The problem of obtaining the relationship between 10-LSR at age a 

(10LSa) and 10-PSR at age a (10PSa) can be tackled in the following manner. 

 

Denoting 5rx and 5rx+10 as the average annual exponential rates of growth of persons aged  (x, 
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x+5) and (x+10, x+15) respectively during the time-interval (z, z+10), one may easily find the 

following approximations: 5Nx(z+5) ≈ exp (5*5rx) * 5Nx(z)           ... (5) 

 and  5Nx+10(z+5) ≈ exp (-5*5rx+10) * 5Nx+10(z+10)   .……  (5.1). 

The quantities 5rx and 5rx+10 in (5) and (5.1) can be estimated from the two consecutive census age-

data, 10 years apart, through the following formula: 

[[[[ ]]]])z(P)/10z(Pln1.0r̂ y5y5y5 ++++∗∗∗∗====  , for y = x & x+10 ……..(5.2). 

Now, dividing (5.1) by (5) and simplifying the expression and putting x = a, we get, 

   (((( ))))[[[[ ]]]]10a5a5a10
a5

10a5
rr5-exp*PS  

)5z(N

)5z(N
++++

++++ ++++∗∗∗∗≈≈≈≈
++++

++++
   ………….. (6). 

The quantity 10PSa (defined by the ratio 5Na+10(z+10)/5Na(z) as mentioned earlier under the heading 

 ‘Notations used’) used in (6) stands for ‘10 - PSR at a’ during the decade (z, z+10). Now, using (4) 

& (6), and re-arranging the terms, we get,               

 10LSa = 10PSa * exp(R), for a > 0          ... (6.1). 

The symbol 10LSa, used in (6.1), stands for ‘10 - LSR at age a’ and, R is given by, 

       dyr +)r+r(5-  =R  y

12.5+a

2.5+a

10+a5a5 ∫∫∫∫∗∗∗∗   …………..(6.2). 

The equation (6.1) along with (6.2) provides the requisite relationship between 10-LSR at 

age a and 10-PSR at age a. The equation (6.1) clearly indicates that in general 10LSa is not equal to 

10PSa excepting the case where exp(R) becomes unity which occurs only when R vanishes. One may 

easily verify that the vanishing of R is ensured in the following situations ----(i) the population under 

study is stationary, that is ar = 0 for all a, (ii) the population under study is perfectly stable, that is 

ar = r (const.) for all a and (iii) ar is a linear function of age a and of the form ar = A + B*a, where 

A and B are non-zero constants.
3
 

 

                         

3
 It may be noted that the cases (i) and (ii) are the particular cases of (iii) where A=B=0, and A≥≥≥≥0 but B=0 

respectively. The linear growth curve under the case (iii) is not ordinarily expected in a destabilized 

population. Defining rx(t)=
dt

d
[lnNx(t)], it can be shown that Nx(t)=C(t)*exp[a(t)+x*b(t)], where a(t), b(t) 

and c(t) are  non-zero constants under the case (iii) where rx=A(t)+B(t)*x. A close adherence to the form of Nx 

function mentioned above shows that such an age-structure is rather unusual in a destabilized population. 
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To use the formula (6.1) in practice for estimating 10LSa from 10PSa it is necessary to evaluate 

the integral in the R.H.S. of (6.2). Assuming xr - curve being a second degree polynomial, the 

integral in the R.H.S. of (6.2) can be evaluated through Simpson's one-third rule of integration, and 

thus by using the above rule of integration, we get, 

(((( ))))5.12a5.7a5.2ax

12.5+a

2.5+a

rr*4r
3

5
dx r ++++++++++++ ++++++++≈≈≈≈∫∫∫∫  for a ≥≥≥≥  5 

       (((( ))))10a55a5a5 rr*4r
3

5
++++++++ ++++++++≈≈≈≈   for a ≥≥≥≥  5  ……… (7), 

where x5 r = 5.2xr ++++ , for x = a, a+5 & a+10. Since the quantity 5.2xr ++++  is the average annual exponential 

rate of growth of persons at (exact) age x+2.5, the mid-point of the age-interval (x, x+5), during the 

decade (z, z+10), the quantity 5.2xr ++++ can be treated for all practical purposes approximately equal to 

x5 r , the annual exponential rate of growth of persons aged (x, x+5). 

Now, using (6.2) & (7) in (6.1) and simplifying the expression, we find 

(((( )))) 5  a  , rr2 -r
3

10
-exp*PS  LS 5 10+a5 5+aa5a10a10 ≥≥≥≥





++++∗∗∗∗≈≈≈≈  ……….(8) 

Using two consecutive decennial census age-returns presented in 5-year age-groups, one can easily 

obtain the estimate of 10-LSR at age a (10LSa) by replacing 10PSa by 10CSa, the intercensal 

survivorship ratio, and a5 r  by a5 r̂ , obtained through the formula (5.2) by replacing y = a. That 

is, (((( )))) 5afor   ,r̂r̂  2-r̂
3

10
-expCS  ŜL 5 10+a5 5+a5 aa10a10 ≥≥≥≥





++++∗∗∗∗∗∗∗∗≈≈≈≈  …(8.1) 

The formula (8.1) provides a procedure for translating 10-CSR at age a into the 

corresponding 10-LSR at age a in any closed population under the assumption that the age-

specific growth curve xr  follows a second-degree polynomial in the age-interval (a, a+10). One 

may easily verify from the equation (8.1) that the equality between 10-CSRs and 10-LSRs holds 

good only when the population under study is either stationary (that is, 5ra = 0 for all a) or stable 

(that is 5ra = r which is constant for all a). 
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Estimation of 10-LSRs from Two Consecutive Census Enumerations with Intercensal Interval 

Other than 10-years and Not Necessarily Multiple of Five Years: 

 

It may be noted that the formula (8.1) can be used when the intercensal period is exactly ten 

years. However, when the intercensal period is other than 10 years and not necessarily multiple of 

5, the following formula which is based on the equations (4) and (7) may be used for estimating 10-

LSRs (10LSa) : 

(((( )))) 5afor   ,r+r4+r
3

5
exp

N 

N
  LS 5 10+a5 a5 a

a5

10+a5
a10 ≥≥≥≥




 ∗∗∗∗∗∗∗∗≈≈≈≈  …….. (9). 

The notation x5 N , for x = a & a+10, stands for average person-years lived by a person aged 

(x,  x+5), and 5rx , for x = a, a+5 & a+10, denotes the annual exponential rate of growth of persons 

aged (x, x+5) during the intercensal period (z, z+m) of m years, not necessarily integral multiple of 

five years. The statistics x5 N  and 5rx can be estimated through the following formulas: 

 10+a and a =x for   ,
r*m

(z)P -m)+(zP 
 = N

ˆ

5 x

x5x5
x5 ……………(9.1) 

and 

(((( ))))[[[[ ]]]] 10+a&5+a a,=xfor   ,(z)P/m)+(zPln
m

1
 =r̂ x55 xx5 …….(9.2)  

The quantities 5Px(z), and 5Px(z+m) in (9.1) and (9.2) denote the number of person in the age-group 

(x, x+4) enumerated according to the censuses at time z and z+m respectively. The following 

explanations for using the equation (9.1) in estimating intercensal age-specific person-years lived, 

proposed by Preston and Bennett (1983), compared to the other existing procedures are worth noting. 

 

The above approximation (equation 9.1) for x5 N , the average number of person-years lived
4
 

by a group of persons aged (x, x+5) during the intercensal period (z, z+m), makes use of the 

definition of an average annual rate of growth  (5Rx) of persons aged (x, x+5) during the above 

mentioned period in terms of average annual increase in the number of persons aged (x, x+5) during 

                         

4
Preston and Bennett (1983) proposed such an approximation for x5 N while developing a technique for 

estimating adult mortality from two enumerations, m-years apart, under generalized population model of age-

structure where the intercensal age-specific growth rates represent the average experience during the period. 
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the intercensal period (z, z+m) per person-years lived during the same period. Mathematically, 5Rx 

can be defined by the following formula: 

N*m

(z)P -m)+(zP 
=R

5 x

x5x5
5 x

 

By inter-changing the variables 5Rx and x5 N  in the above formula one could find an 

estimating formula (see the formula (9.3) as shown below) for x5 N similar to (9.1) provided, of 

course, a reasonably good estimate of 5Rx consistent with the two census enumerations is available.  

R*m

(z)P -m)+(zP 
=N

5 x

x5x5
5 x

 ……………(9.3) 

Undoubtedly, the value of x5 N , estimated through the formula (9.3), depends upon whether 

the value of 5Rx is equated to an arithmetic, or a geometric or an exponential rate of population 

growth. Since in a destable population in which number of persons in any age grows 

exponentially with the rate of growth applicable to that age, the quantity 5Rx should be equated to 

5rx , the average annual exponential rate of growth of persons aged (x, x+5) during the intercensal 

period, so as to obtain a reasonably good estimate of the average person-years during the 

intercensal period (z, z+m) – denoted by x5 N . One would like to know how far such an average 

person-years ( x5 N ), estimated through the P-B method (equation 9.1), differs from those obtained by 

arithmetic mean -- A.M ( )a(
x5 N ), and geometric mean -- G.M ( )g(

x5 N ). Keeping in mind that under a 

destable population in which the population aged (x, x+5) grows exponentially with annual growth 

rate 5rx during the intercensal period (z, z+m), that is )rmexp()z(P)mz(P x5x5x5 ∗∗∗∗∗∗∗∗====++++ , the values 

of )a(
x5 N  and )g(

x5 N , which are often used in demographic analysis, can be defined by the following 

equations,: 

  )a(
x5 N  = [[[[ ]]]])r*mexp(1

2

)z(P
x5

x5 ++++∗∗∗∗  ………(9.4) 

)g(
x5 N = 







 ∗∗∗∗
∗∗∗∗

2

rm
expP x5

x5  ……………...(9.5) 

Under the P-B method, the value of x5 N is given by the following equation:  

(((( ))))1)rmexp(
rm

)z(P
N x5

x5

x5

x5 −−−−∗∗∗∗∗∗∗∗
∗∗∗∗

====  ……….(9.6) 
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Now, by expanding and rearranging the exponential function term by term in power of yx 

(=m∗∗∗∗5rx) in x5 N , )a(
x5 N  and )g(

x5 N  by Taylor's series it can be shown analytically that the 

estimate of person-years lived ( x5 N ) obtained through the formula (9.1) proposed by Preston and 

Bennett (P-B, 1983) lies between those of the estimates )g(
x5 N  and )a(

x5 N  obtained under 

geometric and arithmetic means respectively; and the value of x5 N  can be approximated well 

through the following approximation:  0.66667=a  where,Na)-(1+Na  N
(a)

x5

(g)
x5x5 ∗∗∗∗∗∗∗∗≈≈≈≈ . 

The above analytical exposition indicates that, in general, the P-B estimate for x5 N  is not 

identical to that of the GM estimate ( )g(
x5 N ). However, they will be sufficiently close to each other 

in situations where 5rx is sufficiently small such that the term with higher powers of yx(=m.5rx) 

beyond the second degree in the Taylor's expansion of the exponential functions in the R.H.S of 

the equations (9.5) & (9.6)  can be ignored for all practical purposes. 

There are some sophisticated and theoretically more precise techniques for estimating age-

specific intercensal person-years lived which have been developed in the recent past (e.g., Coale, 

1984; Bhat, 1987; and see also Bhat, 1995). However, in the context of poor quality of census returns 

in many developing countries whose age-sex-data are often distorted due to age-misreporting and 

digital preferences in age-reporting particularly at ages ending with 0 or 5, we prefer to use the P-B 

method not only because of its operational convenience compared to the other two methods but also 

due to the fact that the P-B method is applicable even when the intercensal period is not an integral 

multiple of 5. It may be noted here that the Coale's procedure requires sufficiently accurate single 

year age-returns,
5
 and the technique proposed by Bhat (1987) though simpler than the Coale's 

approach is applicable only when the intercensal period is 10 or 5 years
6
. Thus, in the context of 

poor quality of age-data, as frequently found in many developing countries, mere methodological 

sophistication under certain assumptions, which are unable to control (or at least dilute) the adverse 

                         
5
 Coale (1984) and Bhat (1987) proposed alternative methods for developing countries where single-year census age-

returns are subjected to heaping at ages ending with digits zero, and/or five. 
6
 Bhat's (1987) method assumes (i) that the population within a 5-year age interval is linearly distributed, and (ii) that 

deaths to a 5-year cohort are uniformly distributed during the intercensal period. Owing to the fact that the above 

assumptions, particularly the second one, do not hold good in general at younger and older ages (including open-ended 

terminal age-interval), the author proposed to make use of appropriate model life table to obtain suitable interpolation 

factors for estimating the person-years lived at those ages. The selected model mortality pattern, assumed to be applicable 

to the population under study, has considerable impact on the estimates.  
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effects of the error in the data, seems unwarranted. 

 

Estimation of 10-LSRs & 5-LSRs under stability with intercensal period other than 10 years 

When the population under study is stable or approximately stable with growth rate r, the 

formula (9) becomes:   5afor  r),(10exp  
N

N  
  LS

5 a

5 10+a
10 a

≥≥≥≥∗∗∗∗∗∗∗∗≈≈≈≈  …………………. (10) 

Knowing the values of 10-LSR (10LSa) through the equation (8) or (9) applicable to any 

closed population (destable) or through the equation (10) applicable to an approximately stable 

population, the values of 5-LSR (5LSa) can be estimated through the following approximation: 

 5LSa = [10LSa-5 ∗∗∗∗ 10LSa]
¼
, for 5<a <w-5  ... (10.1) 

where w, being the initial age of the open-ended age interval, and   

 5LS5 = 10LS5 / 5LS10   ... (10.2) 

and 

 5LSw-5 = 10LSw-10 / 5LSw-10  ... (10.3) 

 

Relationship Between ‘10-cum-PSR at Age a’ and the Associated ‘10-cum-LSR at age a’ in a 

Destabilized Population Model 

 

Integrating both sides of the equation (2) in the age-range (a, w) where w being the maximum 

age attainable by a person in the population under study, and using the first mean value theorem of 

integral calculus, there exists a point (age) Ca+ lying between the ages a and w such that the 

following identify holds true: 

 a

C

0

ya TdyrexpAN

a

∗∗∗∗













−−−−∗∗∗∗≈≈≈≈ ∫∫∫∫

++++

++++ , where a< ++++aC <w, and dxlT

w

a

xa ∫∫∫∫==== …………. (11) 

Though the exact magnitude of Ca+ is not known, however the mean age of the sub-

population beyond age a may be taken as an approximation to Ca+. Some analytical justification of 

such an approximation can be found elsewhere (see, Lahiri, 1983, pp.143-148). It will be found later 

on that the magnitude of the difference C(a+10)+ - Ca+ is more important than those of the individual 

Ca+'s in determining relationship between 10-cum-PSR at age a and 10-cum-LSR at age a in any 

destabilized population. Now, using (11) we get, 



 

 -:14:- 

++++
++++

++++++++ ′′′′∗∗∗∗













−−−−≈≈≈≈ ∫∫∫∫

++++++++

++++

a10

C

C

y
a

)10a(
SLdyrexp

N

N
)10a(

a

 ………….. (11.1) 

where Ca+ and C(a+10)+ which are two points closely approximated by the respective mean-ages 

belonging to the age-intervals ‘a & above’ and ‘a+10 & above’ respectively and ++++′′′′a10 SL =Ta+10 / Ta . 

Since all the functions in (11.1) pertain to the time z+5, the ratio   N(a+10)+ / Na+ in the L.H.S. of 

(11.3) is also related to the time z+5 and hence it is different from the 10-cum-PSR at age a 

( ++++′′′′a10 SP ) during the period (z, z+10) which defined by is the ratio of persons aged ‘a+10 & above’ 

at time z+10 to those aged ‘a & above’ at time z.  

 

Following the similar procedure as adopted in developing the relationship between ‘10-LSR 

at age a' (10LSa) and ‘10-PSR at age a’ (10PSa), shown under the formulas (4) to (6.1), the 

relationship shown below between ‘10-cum-LSR at age a’ ( ++++′′′′a10 SL ) and ‘10-cum-PSR at age a’ 

( ++++
′′′′
a10 SP ) can be obtained by replacing 5Na(t) and 5ra by  Na+(t) and  ra+ respectively, and  R by 

I(Ca+, C(a+10)+): 

(((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]]++++++++++++++++++++++++++++++++ ∗∗∗∗++++∗∗∗∗−−−−∗∗∗∗′′′′≈≈≈≈′′′′ )10a(a)10a(aa10a10 C,CIexprr5expSPSL   ………..(12), 

where, (((( )))) ∫∫∫∫
++++++++

++++

====++++++++++++

)10a(

a

C

C

y)10a(a dyrC,CI  …………(12.1), and Ca+ and C(a+10)+ are two points closely 

approximated by the respective mean-ages belonging to the age-intervals ‘a & above’ and ‘a+10 & 

above’ respectively, and the notations ++++′′′′a10 SL  and ++++
′′′′
a10 SP have already been defined under the 

section “Notation Used”.  To use the above relationship in practice it is necessary to evaluate the 

integral in the R.H.S. of (12.1). The integral denoted by I(Ca+ , C(a+10)+) can be evaluated numerically 

under certain assumptions regarding the nature of the yr  curve as discussed in the following section: 
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Evaluation of the Integral I(Ca+ , C(a+10)+) defined by (12.1) 

Let Ca+ , C(a+5)+ and C(a+10)+ represent the mean ages of the sub-populations beyond ages ‘a’, 

‘a+5’ and ‘a+10’ respectively. If the whole interval of integration viz, S ≡ (Ca+ , C(a+10)+) of width 

ha+5 is divided into two sub-intervals viz, S1 ≡ (Ca+ , C(a+5)+) and S2≡(C(a+5)+, C(a+10)+) of width ha+2.5 

and ha+7.5 respectively, and the two sub-intervals are almost of equal width (that is, ha+2.5 ≡ ha+7.5), 

then the integral I can be evaluated through the use of Simpson's one-third  rule of numerical 

integration
7
, under the assumption that the growth curve ( yr ) follows approximately a second degree 

polynomial in y within the whole range of integration denoted by S. Thus, applying the Simpson's 

one-third rule of numerical integration in (12.1), we get, 

(((( )))) [[[[ ]]]]
++++++++++++++++++++

++++++++

++++

++++∗∗∗∗++++======== ∫∫∫∫
∗∗∗∗
++++

++++++++++++ )10a()5a(a

)10a(

a

CCC

C

C

5a
y)10a(a rr4r

3

h
dyrC,CI  ……….(13) 

where (((( )))) 2/hhh 5.7a5.2a5a ++++++++
∗∗∗∗
++++ ++++====  is the average width

8
 of the two  sub-intervals S1 and S2 having almost 

the same width. Similar to 5.2xr ++++  which is well approximated by 5rx, the exponential rate of growth of 

persons aged (x, x+4) during the intercensal period, the value of 
++++xCr  may also be well-approximated 

by rx+ , the exponential rate of growth of persons aged ‘x & above’ during the intercensal period. An 

analytical explanation of the above logical argument that 
++++xCr  is being equal to rx+ can be found 

elsewhere (c.f. Lahiri, 1983; and Lahiri, 1985). 

                         

7
 The application of the Simpson's one-third rule of numerical integration is theoretically justified when the 

whole range of integration is sub-divided into even number of sub-intervals of exactly equal width. In case 

where the widths of the sub-intervals are not exactly equal but they are sufficiently close to each other, the rule 

may still be used to obtain an approximate value of the integral. However, the integrand should be 

approximately second-degree polynomial in the whole range of integration. 
8
The average width h

*
a+5 of those of sub-intervals S1 and S2 is identical to the half of ha+5, the width of the 

whole interval S (=S1+S2).  
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Thus, by replacing 
++++xCr by rx+ , for x=a, a+5 & a+10 in (13), we get the value of  

I[Ca+, C(a+10)+] as shown below: 

(((( )))) [[[[ ]]]]++++++++++++++++++++

∗∗∗∗
++++

++++++++++++ ++++∗∗∗∗++++∗∗∗∗≈≈≈≈ )10a()5a(a
5a

)10a(a rr4r
3

h
C,CI ……………(13.1)

It is worthwhile to mention here that the formula (13.1) produces sufficiently reliable estimate of the 

integral I provided the widths of the two sub-intervals S1 and S2 are sufficiently close to each other. 

However, when the widths of the two sub-intervals differ widely from each other, the following 

procedure may be adopted. If k be the mid-point of the interval (Ca+ , C(a+10)+), then the integral I can 

be obtained through the Simpson's rule as follows: 

(((( )))) [[[[ ]]]]++++++++++++

∗∗∗∗
++++

++++++++++++ ++++∗∗∗∗++++∗∗∗∗≈≈≈≈ )10a(ka

5a

)10a(a rr4r
3

h
C,CI  …………. (13.2) 

The value of kr  may be obtained as follows: 

(i) If k belongs to the sub-interval S1, that is Ca+<k<C(a+5)+ , then 

(((( )))) (((( ))))[[[[ ]]]]++++++++++++ ∗∗∗∗∗∗∗∗ )5a(+aa+5)+(a
2.5+a

k rC-k+rk-C
h

1
 = r  ……………. (13.3) 

where ha+2.5 = C(a+5)+ - Ca+ is the width of the sub-interval S1; or (ii) if k belongs to the sub-interval 

S2, that is, C(a+5)+<k<C(a+10)+, then 

(((( )))) (((( ))))[[[[ ]]]]++++++++++++++++++++++++++++++++ ∗∗∗∗∗∗∗∗ )10a(5)(a)5a(10)(a
7.5+a

k rC -k+rk-C
h

1
=r     …..(13.4) 

where ha+7.5 = ++++++++ )10a(C  - ++++++++ )5a(C   represents the width of the sub-interval S2. 

 

A general relationship between ++++′′′′a10 SL  and ++++′′′′a10 SP  can be obtained by using  (13.2) in (12), 

and re-arranging the terms we get, 

(((( )))){{{{ }}}} )14(.......rh2rh15
3

2
expSPSL k5a)5a(5aa10a10 




 ∗∗∗∗∗∗∗∗−−−−∗∗∗∗−−−−−−−−∗∗∗∗′′′′≈≈≈≈′′′′ ∗∗∗∗
++++

∗∗∗∗
++++++++

∗∗∗∗
++++++++++++ , 

where, [[[[ ]]]] ,   C-C
2

1
=h +a+10)+(a5a

∗∗∗∗
++++  and (((( ))))++++++++++++

∗∗∗∗
++++++++ ++++==== )10a(a2

1
)5a( rrr . It may be noted that ∗∗∗∗

++++5ah can also be 

regarded as the average widths of the two sub-intervals S1 and S2.  
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The quantity kr  is given by (13.3) or (13.4) depending upon whether k belongs to S1 or S2. 

One may easily verify from (13.3) or (13.4), if S1 and S2 are exactly of equal width, that is, when k 

coincides with ++++++++ )5a(C , then kr  will be exactly equal to ++++++++ )5a(r . Hence, when the widths of S1 and S2 

are of equal size, kr  in (14) should be replaced by ++++++++ )5a(r  and ∗∗∗∗
++++5ah  should be replaced by 5a2

1 h ++++ , half 

of the width of the interval S. 

 

It is worthwhile to mention here that in the case of usual (or conventional) survival ratios, 

the equality between 10-LSRs and 10-PSRs holds good when the population under study is either 

stationary or stable; whereas in the case of cumulative survival ratios, the equality between 10-

cum-LSRs and 10-cum-PSRs holds good only when the population under study is a stationary one. 

When the population under study is stable or approximately stable, the equation (14) becomes:           

     (((( ))))[[[[ ]]]]rh10expSPSL 5aa10a10 ∗∗∗∗−−−−−−−−∗∗∗∗′′′′====′′′′ ++++++++++++                  ... (14.1) 

where r is the rate of growth of the stable or approximately stable population, and 5ah ++++ ( ∗∗∗∗
++++∗∗∗∗==== 5ah2 ) 

= ++++++++ )10a(C  - ++++++++ )5a(C  . For obtaining the estimate of ++++′′′′a10 SL  from two enumeration, ten years apart, 

++++′′′′a10 SP  in (14) or (14.1) should be replaced by its observed value ++++′′′′a10 SC , obtained from the age-data 

of the two consecutive decennial censuses. 

 

Estimation of 10-cum-LSRs from two consecutive census enumerations with intercensal interval 

other than 10-years: 

 

The formulas derived above for estimating 10-cum-LSRs from the corresponding 10-cum-

PSRs are applicable when the intercensal interval is 10-years. However, when the intercensal interval 

is other than 10 years not necessarily multiple of 5, the following formula obtained through a similar 

approach to that of 10-LSRs shown under the equation (9), may be used for estimating 10-cum-

LSRs. The formula given below is based on the equations (11.1) and (13): 

(((( ))))











++++∗∗∗∗++++∗∗∗∗∗∗∗∗====′′′′ ++++++++++++

∗∗∗∗
++++

++++

++++++++
++++ 10a(ka

5a

a

)10a(

a10 rr4r
3

h
exp

N

N
SL , for a ≥≥≥≥ 5 ……… (15). 

The value of ++++xN , for x = a & a+10 in R.H.S of (15) can be estimated as follows: 
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10+a & a=x for  N + N = N wy5

5-w

x=y

x ++++++++ ∑∑∑∑  ……….(15.1), 

where,  
y5

y5y5

y5
r̂m

)z(P)mz(P
N

∗∗∗∗

−−−−++++
≈≈≈≈ …………(15.2) 

   and 

   
r̂m

(z)P-m)+(zP
N

+w

+w+w
+w ∗∗∗∗
≈≈≈≈  …………….(15.3) 

The symbol ‘w’ stands for initial age of the terminal open-ended age-interval, and estimates of rx+ for 

 x = a, a+10, & w are given by: [[[[ ]]]](z)Pm)/+(zPln
m

1
=r̂ +x+xx++++  ………….(15.4) 

An estimate of kr can be obtained through the formula (13.3) or (13.4), and ∗∗∗∗
++++5ah is given by 

[[[[ ]]]] ,   C-C
2

1
=h +a+10)+(a5a

∗∗∗∗
++++  

In this case of stable population with growth rate r, the equation (15) becomes 

r)*(hexp
N

N
 = SL 5a

a

)10a(

a10 ++++
++++

++++++++
++++′′′′  ……..(15.5), 

where, ha+5 is the width of the interval [Ca+ , C(a+10)+]. 

 

Estimation of mean age beyond age a (Ca+) and h
*
a+5 

 While obtaining ++++′′′′a10 SL  through the equation (14) or (15), we need to know the value of h
*
a+5 , 

the half of the difference between mean ages of persons beyond ages a+10 and a. The mean-age of 

persons aged ‘a & above’ is generally obtained as the weighted average of the mean ages of all the 5-

year age-intervals, that is their mid-points
9
 together with an arbitrarily fixed mean-age of the open-ended 

terminal age-interval, taking the respective population sizes in various age-intervals including the 

terminal open-ended age-interval as the weights. In demographic estimation particularly for countries 

with limited and defective age data, the element of arbitrariness in locating the mean-age of an open-

ended terminal age-interval is a vexing issue. To remove the above element of arbitrariness as much 

                         

    
9
 Under the assumption of uniform distribution of persons over the 5-year age-interval (x, x+5), where x ≥ 5, the 

mean-age of persons aged (x, x+5) can be assigned to its mid-point, that is, x+2.5. 



 

 -:19:- 

as possible we follow the procedure proposed by Preston and Lahiri (1991). For the benefit of the 

readers, the necessary technical aspects relating to the estimation of Ca+ , mean age of persons aged ‘a & 

above’, have been discussed in the Technical Appendix A. 

 

Splitting of 10-cum-LSRs ( ++++′′′′a10 SL ) into 5-cum-LSRs ( ++++′′′′a5 SL ) 

 

 After estimating 10-cum-LSRs ( ++++′′′′a10 SL ) through the formula (14) or (14.1), one can estimate 5-

cum-LSRs ( ++++′′′′a5 SL ’s) through the following approximations: 

20-w , ... 10, 5, =afor  ,)SL*SL (  SL 4

1

+5)+(a10+a10+5)+(a5 ′′′′′′′′≈≈≈≈′′′′ ……………(15.6) 

SL 

SL 
 = SL 

+105

+510
+55

′′′′
′′′′

′′′′  ……(15.7)        
SL 

SL 
 = SL  and

+-15)(w5

+-15)(w10

+-10)(w5
′′′′

′′′′
′′′′  ……..(15.8) 

The symbol ‘w' stands for the initial age of the open ended terminal age-interval. The formula (15.6) is 

not only operationally convenient, apart from its theoretical simplicity, in splitting 10-cum-LSRs 

( ++++′′′′a10 SL ) into 5-cum-LSRs ( ++++′′′′a5 SL ) but also produces reasonably good estimates of 5-cum-LSRs even 

when the values of 10-cum-LSRs are estimated from the distorted census age-returns. This is because of 

the self-smoothening property of the formula (15.6) (for further details see Lahiri, 1983; pp. 310-324). 

 

Two Mathematical Identities among Life Table Functions in Obtaining 5-cum-LSRs 

from 10-cum-LSRs (along with 10-LSRs), and 5-LSRs from 5-cum-LSRs alone 

 

Knowing the values of 10-LSRs (10LSa) and 10-cum-LSRs ( ++++
′′′′
a10 SL ) from the two enumerated 

age-returns of a closed destable population, not necessarily 10 years (or integral multiple of 5-years) 

apart, through the formulas (8.1) [or (9)] and (14) [or (15)], derived in this papers, one can obtained the 

values of 5-cum-LSRs ( ++++
′′′′
a5 SL ), and 5-LSRs (5LSa) through the following identities respectively: 

++++++++

++++
++++ ′′′′−−−−

′′′′−−−−
′′′′

)5a(10a10

a10a10
a5

SLLS

SLLS
=SL ………(16)   and  

[[[[ ]]]]
++++

++++++++++++

′′′′−−−−

′′′′−−−−∗∗∗∗′′′′
====

a5

)5a(5a5

a5
SL1

SL1SL
LS …………(16.1) 

One can easily verify the above two identities by replacing the survival ratios a10 LS , ++++′′′′a5 SL  and 

++++′′′′a10 SL  with their corresponding standard life table functions as mentioned under the sub-heading 

‘notations used’ 

 In the presence of heavy age misreporting the values of 5-cum-LSRs in contrary to 5-
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LSRs, estimated through the procedure mentioned in the earlier paragraphs, lie between 0 and 1 

for all ages, and its (5-cum-LSRs) visual examination generally show a smooth and regular 

declining pattern. The errors in age-reporting become almost invisible (or latent) due to dampening 

effect of cumulation. However, the values of 5-LSRs ( a5 LS ), which can be obtained through the 

formulas (16.1) after estimating 5-cum-LSRs ( ++++′′′′a5 SL ) through the procedure mentioned earlier in 

this paper, are likely to show some erratic pattern
10

. Further investigations may be carried out in 

obtaining adjusted series of 5-LSRs by smoothing the latent irregularities in 5-cum-LSRs, as 

mentioned above, through a suitable mathematical graduation formula, such as -- Brass type two-

parameter logit model . It is worth mentioning in this context that the smoothing procedures for 

census age-data or the raw (conventional) census survival ratios, distorted due to age-misreporting, 

are rather arbitrary and often influenced by personal predilections. Thus, such an attempt of 

graduating the estimated 5-cum-LSRs through suitable mathematical model would be particularly 

helpful in obtaining smooth series of 5-LSRs without smoothening the distorted age-data or the 

raw survival ratios (see, Lahiri, 1983 for further discussions). It has been shown elsewhere that 

knowing the values of 5-cum-LSRs ( ++++′′′′a5 SL ’s) beyond age 5, defined by the ratio of the form 

x5x T/T ++++  in life table terminology, how one can estimate an appropriate set of 5-year survival 

probabilities ( x5 p ) beyond age 5 consistent with the 5-cum-LSRs values under certain assumptions 

regarding the nature of the lx-curve (for details see, Lahiri, 1985 & 2003). 

 

Some Methodological Issues of the Present Method Compared to the UN Classical Forward 

and Backward Projection and Cumulation Method and Preston-Bennett Method for 

Estimating Intercensal Mortality 

 

 In the context of heavy response biases in age-reporting due to digital preference and/or 

ignorance of correct age in many developing countries, the census based observed values of 10-CSRs 

(10CSa's) or the values of 10-LSRs (10LSa), estimated through equation (8.1), behave very erratically, 

and at times they exceed unity, which is rather absurd in a closed population. To avoid this difficulty, 

                         

10 This is not only because of age-misreporting in the age-returns but also due to the assumptions involved 

in translating continuous form of the formulas into the corresponding discrete forms in estimating 10-LSRs 

and 10-cum-LSRs from two age-returns of a closed population undergoing generalized population model. 
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one may make use of cumulated populations beyond ages 5, 10, 15, etc., so as to calculate the 10-year 

cumulative census survival ratios (10-cum-CSRs) as suggested by Coale and Demeny (United Nations, 

1967; see also United Nations, 1983)). Since no formula was available earlier to translate directly ‘10-

year cumulative census survival ratios’ into the corresponding ‘10-year cumulative life table survival 

ratios’ applicable to a destable population, Coale and Demeny proposed to project the first census age-

distribution forward repeatedly using a family of model life tables at various levels up to the time of the 

second census taken ten years latter. The authors finally suggested that the appropriate model mortality 

table could be identified by comparing the projected population beyond a given age to that of the 

enumerated population in the second census. While assessing intercensal adult mortality in a destable 

population through the application of the classical forward and backward projection methods, some 

researchers (Palloni Kominsky, 1984; Bhat, 1995) found a significant difference in the results and they 

pointed out that the presence of reporting errors in the enumerated age-data is primarily responsible for 

different results between the two procedures. It is worthwhile to mention here that such a disagreement 

between the two procedures may occur even when the age-data are sufficiently accurate. This is 

primarily because of the fact that the method of classical forward projection and that of backward 

projection in estimating intercensal adult mortality inherently assume the equality between 

conventional census survival ratios, and the corresponding conventional life table survival ratios. It 

has been shown earlier that such equality holds good only when the population under study is either 

stationary or stable.   However, in the case of cumulative survival ratios one may easily verify that 

such equality holds good only when the population under study is stationary as shown by the formula 

(14).   

 

In nutshell the present technique, in contrast to the Coale-Demeny method, neither requires the 

assumption of equality between 10-CSRs and 10-LSRs nor requires projecting the initial age-

distribution of persons under different mortality levels up to the end of 10 years period. The method 

proposed here is applicable even when the intercensal period is other than 10 years (not necessarily 

multiple of 5). In the presence of heavy response biases in age reporting as frequently found in many 

developing countries, the use of 10-cum-CSRs which in turn produce 10-cum-LSRs under generalized 

population model reduces the errors due to age-misreporting to a large extent. Furthermore, the direct 
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use of cumulated age-data in the formulas developed here for estimating intercensal mortality has certain 

advantages over that of Preston-Bennett (1983) in controlling the error due to age-misreporting. 

  

 In discrete terms, the life expectancy at age x (e
0
x) based on the basic equations for constructing 

census based adult mortality table, proposed by Preston and Bennett (1983) can be expressed by the 

following approximate formula (see also, United Nations, 1983): 

 
(x)N

r5.0exp N

 e

   y55 u

5-y
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x=y0
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∗∗∗∗

≈≈≈≈

∗∗∗∗++++∑∑∑∑∑∑∑∑
 ----------------- (17) 

where )x(N , the number of persons at exact age x, was be estimated through the following 

approximation as proposed Preston and Bennett (1983): 

   
10

]r̂5[2.expN
ˆ+ ]r̂52.[exp N

ˆ

  (x)N
ˆ x55 x

5x55 5-x
∗∗∗∗∗∗∗∗∗∗∗∗−−−−∗∗∗∗

≈≈≈≈
−−−−

----------(17.1) 

where the notations used in (17) and (17.1) have already been explained in the text. 

 

Comparing the formulas (14) and (15) to that of (17), mentioned above, one may easily find that 

the values of 10-cum-LSRs, estimated through the formula (14) or (15), make direct use of cumulated 

population whereas the numerator of (17) makes use of weighted sum of the form ∑5Ny.exp[R(y)], 

(where R(y) stands for the quantity under the exponential sign in the equation (17), instead of ∑5Ny as 

used in the formula (14) or (15). Furthermore, the development of the formula (14) or (15) is based on 

the assumption of second degree polynomial of the growth curve ( xr ) in contrast to the formula (17) 

that assumes the linearity of xr -curve within each of the 5-year age-intervals excluding the terminal 

open-ended age-interval. 

 

Application to the Age-data of Sweden and India for Estimating Longevity at Adult Ages 

I. Swedish Females, 1966-70 

 Swedish data are well known for their accuracy and have often been used by demographers to 

examine new estimation procedure. In the present investigation, the proposed technique was applied to 

the age-data of Swedish females during 1966-70. The mean person-years lived during 1966-70 by 
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quinquennial ages together with the respective age-specific growth rates were borrowed from a study 

carried by Preston and Bennett (1983). The basic data and the major steps for estimating a10 SL ′′′′  values 

from census age-returns under the generalized population model are shown in Table-1.The overall 

mortality level (e
0
0) consistent with the estimated ++++′′′′a5 SL  values (shown in Table 2) under the Coale and 

Demeny (C-D) West model mortality pattern and its associated life expectancies at various ages are 

also shown in Table 2. 

  

 As the accuracy of the Swedish census age-reporting is well-recognized, one would expect that 

the mortality level (e
0
0) associated with each of the ++++′′′′a5 SL  values should be almost identical to each 

other. But the estimates of mortality level (e
0
0) under the C-D West model mortality pattern presented 

in col.(3) of Table 2 are not fully consistent with the above expectation. It is worthwhile to mention 

here that the mortality levels (e
0
0) corresponding to ++++′′′′a5 SL  values at ages 65, 70, and 75, which vary 

between 75.37 and 76.51, are remarkably close. And the values of e
0
0 corresponding to ++++′′′′a5 SL  at ages 

50, 55, and 60 are also sufficiently close to each other, but the estimates are relatively higher than at 

ages 65 and above
11

. It may be noted that the mortality levels (e
0
0) corresponding to ++++′′′′a5 SL  at ages 5 to 

45 exceed the highest mortality level (e
0
0=80) of the Coale-Demeny model life table system. This is 

mainly due to the fact that the proposed technique assumes that the growth curve (
ar ) follows a 

second-degree polynomial. Whereas an empirical examination of the nature of 5ra values for 

Swedish female shows that the 5ra values 

between ages 5 to 50 are rather irregular and highly erratic. This suggests that 
ar -curve cannot be 

treated as second degree between ages 5 to 50. However, the values of 5ra at ages 55 and above show a 

systematically increasing pattern. Furthermore, at ages 55 and above the value of r(a+5)+ is sufficiently 

close to the average of ra+ and r(a+10)+. The above pattern of 5ra and ra+ at ages 55 and above resembles 

                         

11
 The systematic changes in the estimates of e

0
0 excepting for the open-ended terminal age-interval, as 

observed in the estimates of e
0
0, presented in the coloumn (3) of the Tables 2 are primarily due to the blending 

error in splitting 10-cum-LSRs into 5-cum-LSRs through the formulas (10.1) to (10.3) over various age-

intervals. It worth noting though the effect of the error in estimating 
∗∗∗∗
++++5ah [defined by

2
1 (C(a+10)+ - Ca+)] as 

discussed under the methodology section cannot be totally ruled out, however, its impact becomes negligibly 

small as the magnitudes of Ca+ and C(a+10)+ are  sufficiently close to the mean-ages of persons aged  ‘a & 

above’ and ‘a+10 & above’ respectively. 
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quite closely with a second degree polynomial of the growth curve (
ar ) beyond age 55 which is also 

supported  

by the closeness of the estimates of e
0
0 corresponding to ++++′′′′a5 SL  values at ages 55 and above. The 

median mortality level (e
0
0) out of the last five e

0
0 values (that is, at ages 55 and above) in col.(3) of 

Table 2 is 76.51 years which can be taken as the final estimate of mortality level (e
0
0)  for Swedish 

females during 1966-70.  

  

 The values of 0

ae  at various quinquennial ages beyond age 5 corresponding to the Coale-Demeny 

(1983) west model life table for females at the above median mortality level, that is, 0

0e = 76.51 years 

are sufficiently close to those of the official estimates of 0

ae  particularly at younger ages. The above 

analysis indicates that the West model mortality pattern corresponding to the level 0

0e =76.51 resembles 

well with the Swedish female mortality pattern during 1966-70. 

 [Tables 1 & 2 to be entered here - shown at the end of the paper] 

 

Indian Females, 1981-91 

 The second application refers to the enumerated age-returns of Indian females of 1981 and 1991 

censuses. The relevant data are borrowed from the published reports of Indian censuses (Office of the 

Registrar General of India, 1987 & 1997). It is needless to emphasize that the magnitude and pattern of 

age misreporting in Indian censuses create considerable difficulties in estimating demographic 

parameters through indirect techniques. An empirical study of the values of ra+ during 1981-91 over 

various quinquennial ages shows a gradual-increasing trend particularly between ages 30 to 60. 

Irregular fluctuations seem to be more pronounced in ar5  values compared to ra+ values over ages. 

However a regular increasing trend has been observed in the age-range 35 to 55. The above empirical 

investigation suggests that the growth curve ( ar ) for Indian females during 1981-91 resemble very 

closely a second-degree polynomial particularly between ages 30 to 60. Since the intercensal period is 

ten years, the formula (14) was applied to estimate 10-cum-LSRs ( ++++′′′′a10 SL ) at ages 5 to 60 which were 

spitted into 5-cum-LSRs ( ++++′′′′a5 SL ) values through the application of the formulas (15.5) to (15.7). These 
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estimated values of ++++′′′′a5 SL  and the estimates of 5ra and ra+ along with the average persons years lived 

during the intercensal period 1981-91 are presented in Table 3. The estimated values of ++++′′′′a5 SL  along 

with the corresponding mortality levels are presented in Table 4. 

 It has been mentioned earlier that 5-cum-LSRs values alone cannot determine a life table 

uniquely unless the appropriate mortality pattern is also known. An empirical study with various model 

patterns it is found that the model mortality patterns in the UN South Asian model life tables work 

reasonably well for Indian females during the decade 1981-91. The estimates of mortality levels ( 0

0e ) 

associated with the estimated ++++′′′′a5 SL values during 1981-91 are presented in the col.(3) of Table 2. The 

estimates of mortality levels ( 0

0e ) associated with the estimated ++++′′′′a5 SL  values are sufficiently closed in 

the age-range 30 to 65. These findings indicate that the assumptions involved in estimating 10-cum-

LSRs ( ++++′′′′a10 SL ) from the corresponding 10-cum-CSRs ( a10 SC ′′′′ ) are largely satisfied and the errors in 

age reporting get diluted considerably due to dampening effects of cumulation. Thus, the median 0

0e  

value (56.667 years) of the 0

0e  values corresponding to the estimated (observed) ++++′′′′a5 SL values at ages 

30 to 65 under UN South Asian Model life table system may be taken as the appropriate mortality level 

for the Indian females during the decade 1981-91.  The life tables at ages 5 and above under UN South 

Asian model mortality corresponding to the life expectancy of 56.667 may be taken as the appropriate 

adult mortality tables consistent with the set of ++++′′′′a5 SL  values at ages 5 and above for Indian females 

during 1981-91. The e(x) values at ages 5 and above corresponding to the median mortality level (that 

is, e(0)=56.667 during 1981-91 ) which are obtained by linear interpolation are presented in col.(4) of 

the Table 2. These estimated e(x) values during 1981-91 are also sufficiently close to those obtained by 

SRS during 1981-91 as the average values of e(x) during the period 1981-85, and 1986-90 obtained by 

SRS. These values are shown in col.(5) of Table 4. 

 It has been shown in an earlier study (Lahiri and Meneges, 2004) that the mortality pattern for 

Indian females during 1971-81 is closer to C-D South Model Life Table System, whereas that for the 

period 1981-91, as indicated by the present study, resembles closely with the UN South Asian Model 

Life Table System. The above findings are also supported by some other studies on mortality pattern 

carried out on the basis of SRS data on age-specific death rates during the periods 1971-81, and 1981-

91 respectively (Roy, and Lahiri, 1987; and Lahiri, and Rao and Srinivasan, 2003). 
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[Tables 3 & 4 to be here - shown at the end of the paper} 

Summary and Conclusions  

An attempt has been made in this paper in developing an analytical relationship between  ‘10-

year conventional census survival ratios’ (10-CSRs) and its associated ‘10-year conventional life 

table survival ratios’ (10-LSRs), defined by the ratio x510x5 L/L ++++  in life table terminology, in any 

closed population that follows a generalized population model applicable to any population. It has 

been shown that the equality between 10-CSRs and 10-LSRs, which is assumed in conventional 

census survivorship approach in assessing intercensal mortality, holds good only when the 

population under study is either stationary or stable. An attempt has also been made to develop a 

formula for estimating 10-LSRs from two census enumerations having intercensal period other than 

ten years not necessarily multiple of 5. 

 

Using the property of cumulative census survivorship ratios, based on cumulated census  age-

returns beyond certain quinquennial ages, in controlling the effects of age-misreporting to a large 

extent, a formula has also been proposed in this study for estimating ‘10-year cumulative life table 

survival ratios’ (10-cum-LSRs), defined by the ratio x10x T/T ++++  in life table terminology, from the 

corresponding ‘10-year cumulative census survivorship ratios’(10-cum-CSRs). The development of 

such a relationship has been carried out in this study under the assumption of generalized model of 

age-structure of a closed population having decennial population censuses. Furthermore while 

developing the requisite formulas for estimating 10-LSRs, and 10-cum-LSRs from two enumerations 

as mentioned above, it is assumed that the age-specific growth curve follows a second-degree 

polynomial. A formula has also been derived here in estimating 10-cum-LSRs from two consecutive 

census age-returns of a population irrespective of width of the interval between the two consecutive 

censuses, not necessarily multiple of 5. It is worthwhile to mention here that the equality between the 

10-cum-CSRs and 10-cum-LSRs holds good only when the population under study is stationary.  

  

 There exists an exact formula (mathematical identity), shown in this paper, through which 
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the above set of 10-cum-LSRs (along with the knowledge of 10-LSRs) can be split into 5-cum-

LSRs (defined by the ratios of the form, x5x T/T ++++ ) which, in turn, can be translated into 5-LSRs, the 

5-year conventional life table survival ratios through another identity. However, in this study for 

splitting 10-cum-LSRs into 5-cum-LSRs we have used another approximate formula which is not 

only operationally more convenient than the exact formula but also helps in smoothing the 

fluctuations in 10-cum-LSRs estimated from the census age-returns. Even in the presence of age 

misreporting the values of 10-cum-CSR over ages usually show a systematically declining pattern of 

positive fractions, as one would normally expect in contrast to the erratic pattern of 10-CSRs due to 

age misreporting. Thus one would expect that the values of 5-cum-LSR over ages estimated through 

the above procedure would also show similar regular pattern in contrast to those of 5-LSRs.  Further 

investigations may be carried out in obtaining adjusted series of 5-LSRs by smoothening the latent 

irregularities in 5-cum-LSRs due to age-misreporting through a suitable mathematical graduation 

formula, such as -- Brass-type two-parameter logit model (see, Lahiri, 1983 for further discussions). 

Such an attempt would be particularly helpful in obtaining smooth series of 5-LSRs without 

smoothening of the distorted age-data and/or the raw (conventional) census survival ratios due to 

age misreporting. It is well recognized that the smoothing of defective age-data or survival ratios 

are rather arbitrary in nature and often influenced by personal predilections. 

  

 The formulas developed here for estimating longevities at various quinquennial ages have 

been applied to the age-data of Sweden, well known for its accuracy, followed by those of Indian data 

that are heavily distorted due to age misreporting. The analyses indicate that the technique proposed 

here works quit well and the estimates of life expectancies at various quinquennial age beyond age 

five are sufficiently close to those of the official estimates based on age-specific death rates for 

periods of the study populations considered here. 
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Technical Appendix-A 

Estimation of Mean-age Beyond age a (Ca+) 

 The mean-age of persons aged ‘a & above’ is generally obtained as the weighted 

average of the mid-points of various 5-year age-intervals together with an arbitrarily fixed mean-age 

of the open-ended terminal age-interval taking the respective population size in various age-intervals 

including the terminal open-ended age-interval as the weights. To avoid the ambiguity of arbitrarily 

fixing mean age of the terminal open-ended age-interval, Preston & Lahiri (1991) proposed the 

following procedure. The mean-age of elderly persons (that is the terminal open-ended age group) 

aged ‘x and above’, where x assumes one of the following values -- 65, 70, 75 or 80, which can be 

obtained through the successive application of the following formulas under the assumption of 

sectional stability of the population aged ‘x & above’ (Preston, and Lahiri, 1991). 

 , )D(
2

r
-

r

)r-b(ln - bln
=A +x

2+x

+x

+xxx

D +x
σσσσ  ------ (A1)   and  

r

A)r-b(-1
=A

+x

D+xx
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+x
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 -------(A2) 

 

where,  
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)N/Nln( NN

(x+)N

1
= b

5 x5 5-x

5 x5 5-x5 x5 5-x
x













∗∗∗∗

∗∗∗∗
------(A3),   and hence    x +A=C P+x +x

------(A4) 

The notations used in the above formulas are as follows: 

APx+ : Mean age of persons aged ‘x & above’ measured from age x;  

ADx+ : Mean age at deaths of persons aged ‘x & above’ measured from age x;  

bx  : ‘Birth-day rate at age x’, defined by the ratio )x(N/)x(N ++++  where )x(N  denotes the 

   number of persons at exact age x;  

 

rx+ : Exponential rate of growth of persons aged ‘x & above’; and  

 

σ
2
(Dx+)  : Variance of the age-distribution of deaths at age ‘x and above’. 

In their paper, Preston & Lahiri (1991) proposed to use some standard values of σ
2
(Dx+) 

based on Coale-Demeny (1983) stable population under “West” model mortality pattern. The 

above formula (A3) for estimating )x(N  and hence )x(N/Nb xx ++++====  rests on the assumption that 

the population at older ages ‘65 & above’ is approximately stable and the death rate at exact age x 

- µ(x) - remains almost constant in the decennial age-range (x-5, x+5) (see, Appendix-B). 
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Technical Appendix-B 

An Approximation for Estimating )x(N , the Number of Persons at Exact Age x, from the 

Quinquennial Age Data Assuming Local Stability in the 10-year Age-interval (x-5, x+5) 

 

 Let us consider a population that grows exponentially with constant rate of growth r(a) = r 

and constant death rate, that is µ(a) =µ , for all ‘a’ in the ten-year age-interval (x-5, x+5). Under 

the assumption of local stability of the population along with above assumptions regarding growth 

rate and death rate in the age-interval, the number of persons at exact age 'a' can be expressed by 

the following equation: 

)5xa(ke*)5x(N)a(N ++++−−−−−−−−−−−−==== , where k = r+µ , and x-5≤a≤x+5  ……………….(B1) 

Now, integrating both sides of the (B1) within the domains of integration x-5 to x, and x to x+5 

we get 5x5 N −−−−  and x5 N , the number of persons in the age-intervals (x-5, x) and (x, x+5) 

respectively as follows: 

  

)1.3B(
k

)e1(*)x(N
Nor

)3B(
k

)e1(*e*)5x(N
N

and

)2B(
k

)e1(*)5x(N
N

k5

x5

k5k5

x5

k5

5x5

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−

====

−−−−−−−−−−−−
−−−−−−−−

====

−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−

====

−−−−

−−−−−−−−

−−−−

−−−−

 

Since  k5e*)5x(N)x(N −−−−−−−−==== , which follows from the equation (B1). Now, dividing (B2) by (B3) 

we get   )4B(eNN k5

x55x5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−====−−−−  

Now, using (B3.1) and (B4) and simplifying the results together with the knowledge of the 

parameter (((( ))))x55x5 NNlnk −−−−====  that follows from the equation (B4), we finally get the desired 

formula for )x(N  as given below: 

(((( ))))
(((( )))) )5B(

NN*5

NNln*N*N
)x(N

x55x5

x55x5x55x5 −−−−−−−−−−−−
−−−−

====
−−−−

−−−−−−−−
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Table 1 

 Estimation of 10-cum-LSRs ( ++++′′′′a10 SL ) at various quinquennial ages starting with  

 age 5 from two enumerations for Swedish females during 1966-70. 

 

 

 

Age 

Av.No. of 

persons-years 

during 1966-70
1
 

Av. annual 

exponential rate 

of growth 

during 1966-70 

 

Av. annual rate of 

growth of person 

aged a and above
2
 

Mean age of 

person aged 

a and above
3
 

 

10-cum-LSRs 

at age a
4
 

a 5Na 5ra ra+ Ca+ ++++′′′′a10 SL  

(1) (2) (3) (4) (5) (6) 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

75 

          80 

  85+ 

267,024 

259,265 

285,619 

309,826 

267,775 

226,859 

226,394 

249,171 

263,172 

260,557 

254,801 

235,205 

201,225 

160,846 

114,792 

 66,452 

 37,059 

 0.015746 

- 0.005044 

- 0.033251 

 0.003975 

 0.048595 

 0.014550 

- 0.016020 

- 0.025007 

- 0.001657 

 0.001220 

 0.000380 

 0.016034 

 0.020365 

 0.022252 

 0.025615 

 0.033675 

 0.022130 

0.005022 

0.004182 

0.004942 

0.008737 

0.009313 

0.004732 

0.003656 

0.006073 

0.010931 

0.013420 

0.016390 

0.021392 

0.023563 

0.025260 

0.027477 

0.029542 

0.022130 

40.5313 

43.1110 

45.6227 

48.4174 

51.5488 

54.3529 

56.7482 

59.1123 

61.7089 

64.5185 

67.4441 

70.5508 

73.8134 

77.1641 

80.6007 

84.0393 

 

0.8768676 

0.8652897 

0.8519670 

0.8401491 

0.8297285 

0.8189904 

0.7953834 

0.7643704 

0.7255138 

0.6778498 

0.6194971 

0.5429924 

0.4467501 

0.3297182 

 

 

 

                         

1
Borrowed from a paper by Preston and Bennett (1983) 

;

N
ˆ

r̂*N
ˆ

 = r̂           

x5

+85

a=x

x5x5

+85

a=x
a

)2

∑∑∑∑

∑∑∑∑
++++  

 
3
 The procedures for estimating Ca+'s including C80+ are described in the text (see, the section - Estimation of mean 

age beyond age a (Ca+) and h
*
a.  

4
 Obtained through the formula (15) applicable for any intercensal interval, not necessarily multiple of 5.  
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Table 2 

 

 Estimation of adult mortality for Swedish Females, 1966-70 consistent  

 with the estimated 5-cum-LSRs during 1966-70. 

 

 

Age 

Estimated 5-cum.LSR 

at age a 
1
 

C-D West Model Mortality Pattern Official life 

expectancy at age a
2
 

  Mort. level - M-

L (e
0
0) w.r. to 5-

cum-LSR at age 

a in col.(2) 

Est. life expectancy at age a 

based on the selected life 

table
3
 

 

a ++++′′′′a5 SL  ML(e
0
0) e

0
a(E) e

0
a(0) 

(1) (2) (3) (4) (5) 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

75 

0.9395289 

0.9333056 

0.9266081 

0.9198029 

0.9137410 

0.9079328 

0.8983878 

0.8830191 

0.8629535 

0.8374228 

0.8049950 

0.7615672 

0.7018020 

0.6195151 

0.5322198 

** 

** 

** 

** 

** 

** 

** 

** 

** 

79.350 

78.330 

77.493 

76.513 

75.372 

76.468 

72.52 

67.58 

62.63 

57.71 

52.80 

47.92 

43.06 

38.24 

33.50 

28.87 

24.39 

20.10 

16.04 

12.39 

9.25 

72.52 

67.64 

62.71 

57.83 

52.96 

48.10 

43.27 

38.49 

33.80 

29.21 

24.75 

20.43 

16.35 

12.58 

9.32 

Note: **: The estimated mortality level exceeds the highest life expectancy in the Coale-Demeny 

model life table system. 

 

                         

1
 5-cum-LSRs are obtained from 10-cum-LSRs (shown in col.(6) of Table 1) through the formulas (15.6),  (15.7) 

  & (15.8)  

2
 Borrowed from the Swedish female life table for the period 1965-70 prepared by the National Central Bureau 

3
 Based on the model life table corresponding to the median mortality level (i.e., e

0
0=77.003 years) among the 

mortality levels (e
0
0) in col.(3) with respect to the estimated ++++′′′′a5 SL  values at ages 50 to 75 shown  in col. 2 of 

Statistics, Sweden (Sweden, Statistiska Centralbyrån, 1974). 
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Table 3 

 

 Estimation of 10-cum-LSRs ( ++++′′′′a10 SL ) at various quinquennial ages starting with  

 age 5 from two enumerations, 10-years apart for Indian females during 1981-91. 

 

 

 

Age 

Av.No. of 

persons-years 

during 1981-

91
1
 

Av. annual 

exponential rate of 

growth during 

1981-91
2
 

 

Av. annual rate of 

growth of person 

aged a and above
3
 

Mean age of 

person aged 

a and above
4
 

 

10-cum-

LSRs at age 

a
5
 

a 5Na 5ra ra+ Ca+ ++++′′′′a10 SL  

(1) (2) (3) (4) (5) (6) 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

75+ 

49,652,788 

43,734,707 

33,431,337 

32,541,487 

29,642,523 

24,506,168 

21,824,228 

17,920,929 

15,503,167 

12,894,648 

9,186,421 

9,800,594 

5,516,200 

4,504,559 

4,335,224 

0.017570653 

0.014473409 

0.020562952 

0.027054384 

0.033380320 

0.031941041 

0.027510732 

0.020408831 

0.021920637 

0.020756286 

0.029004201 

0.021568551 

0.030378269 

0.023024005 

0.034187554 

0.023219597 

0.024277694 

0.026216794 

0.027222531 

0.027257682 

0.025819925 

0.024344449 

0.023477844 

0.024369208 

0.025190589 

0.026907375 

0.026110670 

0.029216141 

0.028491471 

0.034187554 

28.6620195 

32.6220127 

36.5931346 

39.9852172 

43.6411829 

47.4387642 

51.0460792 

54.7571797 

58.3149566 

61.9411378 

65.5922837 

68.6696703 

72.8816028 

76.2398295 

0.85391735 

0.85860905 

0.84987598 

0.81876718 

0.78957088 

0.75609841 

0.72317697 

0.69144307 

0.64942836 

0.62399416 

0.52435897 

0.45359785 

)./P(Pln *0.1 = r̂    3)       ,)P/P(ln *0.1 = r̂ 2)       ,
r̂ 10.

P-  P
 = N

ˆ   1) 81
a

91
aa

81
a5

91
a55 a

a5

81
a5

91
a5

5 a
++++++++++++  

where the enumerated age-data of 1981 and 1991 censuses were borrowed from  

respective census publications of India. 

 

4). The procedures for estimating Ca+'s including C65+ are described in the text-- 

     Estimation of mean age beyond age a (Ca+) and h
*
a+; and 

 

5). Obtained through the formula (14) applicable for decennial censuses. 
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Table 4 

  

Estimation of adult mortality for Indian females, 1981-91 consistent 

 with the estimated 5-cum-LSRs during 1981-91. 

 

 

 

Age 

Estimated 5-

cum.LSR at 

age a 
1
 

U.N South Asian Model Mortality Pattern Official life 

expectancy at 

age a
2
 

  Mort. level - M-L (e
0
0) w.r. 

to 5-cum-LSR at age a in 

col.(2) 

Est. life expectancy at age 

a based on the selected 

life table
3
 

 

a ++++′′′′a5 SL  ML(e
0
0) e

0
a(E) e

0
a(0) 

(1) (2) (3) (4) (5) 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

0.92281153 

0.92534317 

0.92424637 

0.91333267 

0.89668083 

0.87900706 

0.85991540 

0.84091143 

0.81860034 

0.79786230 

0.75631429 

0.69835287 

0.64952529 

59.42673249 

71.99357935 

>e(0)=75 

72.87685444 

63.92552302 

57.80945382 

54.18003794 

54.20752298 

55.40918900 

60.12846095 

58.54276515 

55.52476405 

59.27795497 

62.961 

58.750 

54.112 

49.579 

45.095 

40.616 

36.182 

31.795 

27.486 

23.298 

19.375 

15.793 

12.649 

9.920 

62.125 

58.240 

53.740 

49.440 

45.165 

40.900 

36.560 

32.210 

27.945 

23.240 

19.885 

16.260 

13.220 

10.555 

 

 

 

                         

1
 The value of 5 cum-LSRs ( ++++′′′′a5 SL ) were obtained from 10-cum-LSRs ( ++++′′′′a10 SL ), shown in col.(6) of Table 3, 

through the formulas (15.6), (15.7) & (15.8). 

2
 Based on the model life table corresponding to the  e

0
0=56.667, the median mortality level out of the mortality 

levels (e
0
0) in col.(3) with respect to the estimated ++++′′′′a5 SL  values at ages 30 to 65 of col.(2);  

3 
Average of the life expectancies estimated by SRS for the period 1981-85, and 1986-90. 


