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Abstract

Demographic dynamics can generally be decomposed into direct effects and compo-

sitional effects (due to changes in structures of the population). The magnitude of a

compositional effect can often be measured by a rather obscure covariance term. We

develop alternative formulas that permit decomposition of compositional effects into de-

mographically meaningful components. We apply the new formulas to decompose change

in life expectancy, crude birth and death rates, and the average age of a population.

The change over time in a demographic measure usually can be broken down into a direct

effect due to change in the measure of interest and a compositional effect due to change

in population structure or to heterogeneity in population structure. Two formulas used by

demographers to evaluate compositional effects capture these effects by covariance terms. The

meaning of these covariance terms can be difficult to intuitively understand. Furthermore,

decomposition of the covariance can shed light on the nature of the compositional effect.
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Hence in this article we develop several ways of breaking compositional effects down into

demographically-meaningful components.

To start, it is useful to review some definitions and some notation. The weighted average

of v(x, y) over x will here be denoted by v̄(y), with

v̄(y) =

!∞
0
v(x, y)w(x, y)dx!∞
0
w(x, y)dx

, x continuous, (1.a)

=

"
x vx(y)wx(y)"

xwx(y)
, x discrete, (1.b)

where v(x, y) is some demographic function of interest and w(x, y) is some weighting function.

The variable x can be continuous or discrete; the variable y is continuous. In the applications

presented in this article, x sometimes denotes age and sometimes subpopulations whereas y is

always time, but other application are also of interest.

The covariance function denoted Covw(u, v) can be defined in terms of averages as

Covw(u, v) =

!∞
0
[v(x, y)− v̄(y)] [u(x, y)− ū(y)]w(x, y)dx!∞

0
w(x, y)dx

=

!∞
0 u(x, y)v(x, y)w(x, y)dx!∞

0
w(x, y)dx

−
!∞
0 u(x, y)w(x, y)dx!∞

0
w(x, y)dx

!∞
0 v(x, y)w(x, y)dx!∞

0
w(x, y)dx

= uv − ūv̄. (2)

As indicated by this equation, the covariance between two variables can be interpreted as
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measuring how much the mean of their product exceeds the product of their means. Note that

for simplicity we often omit the arguments x, y and w.

Covariance as a measure of compositional change

Consider first the decomposition formula presented by Vaupel and Canudas Romo (2002). The

equation can be simply and memorably expressed as

˙̄v = ¯̇v + Cov(v, ẃ). (3)

The change in the average, ˙̄v, is

˙̄v =
∂

∂y

!∞
0 v(x, y)w(x, y)dx!∞

0 w(x, y)dx
. (4)

The average change, ¯̇v, is

¯̇v =

!∞
0

#
∂
∂y
v(x, y)

$
w(x, y)dx!∞

0
w(x, y)dx

. (5)

And the covariance Cov(v, ẃ) can be calculated as shown in (2).

The first term on the right-hand side of (3), the average change, might be called the direct

component of change. The second component, the covariance between the variable of interest

and the intensity of the weighting function, is the structural or compositional component of

change. Vaupel and Canudas Romo (2002) note “in equation (3) the covariance is a measure of

the extent to which the underlying variable of interest rises and falls with the relative derivative
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of the weighting function.”

Other studies that find decompositions of the type of equation (3) where the covariance

captures the compositional effect are the works by Preston, Himes and Eggers (1989) and

Schoen and Kim (1991 and 1992).

To show how this decomposition of the change over time can be applied let the function

v(x, y) be equivalent to the force of mortality µ(a, t) at age a and time t and let the weighting

function be N (a, t) the age-specific population size over age a and time t. The crude death

rate (CDR) µ̄(t) can be calculated as

µ̄(t) =

! ω
0 µ(a, t)N (a, t)da! ω

0 N(a, t)da
. (6)

It then follows directly from equation (3) that the change over time in CDR is decomposed as

˙̄µ = ¯̇µ+ Cov(µ, r), (7)

where r(a, t) is the age-specific growth rate of the population which equals the intensity of the

weighting function r ≡ r(a, t) ≡ Ń(a, t).

As an illustration of (7) is the decomposition of the change in the crude death rate for

Germany from 1991 to 1997. Germany benefited from sizeable reductions in the CDR in the

years after reunification, reducing its CDR from µ̄(1991) = 11.397 to µ̄(1997) = 10.495, per

thousand. That is an annual change of ˙̄µ = −0.150. The German development is mainly due

to the direct effect of large reductions in mortality, ¯̇µ = −0.273, particularly in the eastern

part of Germany. The compositional effects pulled the CDR up by half of the direct effect,
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Cov(µ, r) = 0.124.

In many situations the demographic average in equation (1a) can be described as the

product of two terms

v̄(t) =

% ω

0

v(x, t)c(x, t)dx, (8)

where c(x, t) denotes the proportion of the total values of the weights that belong to the cate-

gory x at time t, c(x, t) = w(x,t)!∞
0 w(x,t)dx

, and therefore
! ω
0 c(x, t)dx = 1. Under these circumstances

equation (3) changes to

˙̄v = ¯̇v + vć. (9)

This is easily proved by looking at the derivative of v̄(t), which follows the rule of the derivative

of a product

˙̄v =

% ω

0

v̇(x, t)c(x, t)dx+

% ω

0

v(x, t)ċ(x, t)dx = ¯̇v + v

&
ċ

c

'
. (10)

As discussed by Canudas Romo (2003) as a consequence of equations (3) and (10) the covari-

ance component C(v, ẃ) for the compositional effect of change can also be expressed as

C(v, ẃ) = vć. (11)
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Covariance as a measure of compositional heterogeneity

The Second equation to study compositional effects is found by exchanging the product of

averages, ūv̄, in equation (2) from right to left obtaining

uv = ūv̄ + Cov(u, v). (12)

Vaupel and Canudas Romo (2003) utilize (12) to decompose the change over time of life

expectancy, as discussed below. The formula, however, has many other uses. The basic idea is

that the average of the product of two demographic variables can be decomposed into a direct

effect and a compositional effect. The direct effect is the product of the average values of the

two variables. The compositional effect captures population heterogeneity such that the two

variables of interest tend to correlate across the segments of the population.

To see how this decomposition can shed light on change in life expectancy, let ρ(a, t) denote

the rate of progress in reducing death rates, ρ(a, t) = −µ́(a, t), where the force of mortality at

age a and at time t is denoted by µ(a, t), and the remaining life expectancy at age a and time

t is denoted by eo(a, t).

Vaupel and Canudas Romo show that the time-derivative of life expectancy at birth, de-

noted ėo(0, t), can be expressed as the average of the product ρ(a, t)eo(a, t). Applying (12) it

is shown that

ėo(0, t) = ρ̄(t)e†(t) + Covf(ρ, eo), (13)

where ρ̄(t) and e†(t) are the averages of ρ(a, t) and eo(a, t) respectively with both averages
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weighted by the probability density function describing the distribution of deaths, f(a, t),

(i.e., lifespans) in the lifetable population at age a and time t.

The decomposition in equation (13) expresses the change in life expectancy at birth as the

sum of two terms. The first term is the product of the average rate of mortality improvement,

ρ̄(t), and the average number of life-years lost, e†(t). This term captures the general effect

of a reduction in death rates. The second term, the covariance between rates of mortality

improvement and remaining life expectancies, increases or decreases the general effect, de-

pending on whether the covariance is positive or negative. The covariance captures the effect

of heterogeneity in ρ(a, t) at different ages.

The covariance term is often hard to intuitively express. For instance, Vaupel and Canudas

Romo (2003) comment “whether the covariance is positive or negative is determined by equa-

tion (2). It is difficult to capture the equation in a simple sentence. The basic idea is that

the covariance will be positive if the age-specific pace of mortality improvement tends to be

higher (or lower) than average at those ages when remaining life expectancy tends to be higher

(or lower) than average– with the heaviest weights being given to those ages when death

is most common. Remaining life expectancy generally declines with age. At some age a∗,

eo(a∗, t) = e†(t). The covariance will be positive if before age a∗ the age-specific pace of mor-

tality improvement tends to be higher than average and if after age a∗ the age-specific pace of

mortality improvement tends to be lower than average.”

As an illustration of (13) is the annual change in life expectancy at birth for the Swedish

population in 1903, 1953 and 1998. Over the course of the 20th century Swedish life expectancy

increased substantially. The average pace of mortality improvement, ρ̄, fluctuated from about

1.9% at the turn of the century to 2.1% at mid century and 1.6% at the end of the century.
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The average number of life-years lost as a result of death, e†, dropped from 22 years in 1903

to around 12 years in 1953 and 10 years in 1998. The product ρ̄e† describes the increase in

life expectancy due to the general advance in survivorship. This component is positive and is

the main contributor to the increase in life expectancy. The compositional component is the

covariance between age-specific improvements in mortality and remaining life expectancies.

This term is positive but relatively small. More can be seen in Table 4 in this article.

In the next sections we introduce some alternative equations that can replace the covariance

in equation (12) and (3).

Decomposing the covariance term

Four different decompositions of the compositional effect of change are shown. All these

alternative equations are further refinements of the definition of the covariance in (2). Each

subsection contains an application of the new decomposition.

Difference in growth rates: Change in the general fertility rate

The covariance, Cov(v, ẃ), is separated into two terms. The first term is the average of interest,

v̄(y), and the second is the difference of two averages,
#
˜́w(y)− ¯́w(y)

$
. Each average of the

intensity in the weighting function ẃ(x, y) is weighted by different terms. ¯́w(y) is, as before,

weighted by the function w(x, y) while ˜́w(y) includes as weight the product v(x, y)w(x, y). The

covariance is decomposed as Cov(v, ẃ)

Cov(v, ẃ)
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=

!∞
0 v(x, y)ẃ(x, y)w(x, y)dx!∞

0
w(x, y)dx

−
!∞
0 v(x, y)w(x, y)dx!∞

0
w(x, y)dx

!∞
0 ẃ(x, y)w(x, y)dx!∞

0
w(x, y)dx

= v̄

(!∞
0
v(x, y)ẃ(x, y)w(x, y)dx!∞
0
v(x, y)w(x, y)dx

−
!∞
0
ẃ(x, y)w(x, y)dx!∞
0
w(x, y)dx

)
= v̄

#
˜́w− ¯́w

$
. (14)

As shown in the case of the crude death rate in equation (7), in many cases the weighting

function, w(x, y), equals N(a, t), the age-specific population size over age a and time t. As a

consequence the intensity of the weighting function equals the age-specific growth rate of the

population r(a, t) ≡ Ń(a, t). The difference
#
˜́w(y)− ¯́w(y)

$
can then be seen as a difference of

two overall population growth rates,
#
˜́w(y)− ¯́w(y)

$
= [r̃(y)− r̄(y)]. This difference in growth

rates represents how much (or less) is the product of the variable of interest and the population

size, V (a, t) = v(a, t)N (a, t), growing respect to the average growth of the population.

Let v(x, y) = b(a, t) denote the age-specific birth rate, let w(x, y) = Nf(a, t) be the age-

specific female population size and let ḡ(t) be the general fertility rate (GFR), which is simply

the number of babies divided by the number of women at reproductive ages. The change in

this rate is given by (3) and (14) as

˙̄g = ¯̇b+ ḡ [r̃f − r̄f ] , (15)

where r̃f(y) is the average growth in births if they had experienced the same growth as the

rest of the population. Table 1 shows calculations based on equation (15) that decompose the

change in the GFR for China, Denmark and Mexico from 1990 to 1995. Table 1 indicates

that the GFR fell in China and Mexico and rose in Denmark. In all three countries the
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Table 1: General fertility rate, ḡ(t), in percentage, and the decomposition of the annual change
over time from 1990 to 1995, for China, Denmark and Mexico.

China Denmark Mexico
ḡ(1990) 7.871 4.850 11.083
ḡ(1995) 6.283 5.373 9.671
˙̄g(1992.5) -0.317 0.105 -0.282
¯̇b -0.280 0.081 -0.286
Cov(b, rf) -0.036 0.023 0.004

ḡ 7.036 5.078 10.345
r̃ 0.802 0.285 2.640
r̄ 1.317 -0.165 2.600
ḡ [r̃ − r̄] -0.036 0.023 0.004

˙̄g =
¯̇
b+ ḡ [r̃f − r̄f ] -0.316 0.104 -0.282

Source: Authors’ calculations described in the Note, based on U.S. Census Bureau (2001).

dominant component of this shift was the average change in age-specific birth rates. Changes

in age-composition, captured by the covariance term, had a relatively minor impact, especially

in Mexico. It could be naively thought that there was no change in the structure of the

population. Hence, to better explicate this component we have included here the alternative

decomposition in (15).

The population growth rate, r̄(t), is the highest in Mexico followed by China while the

Danish females in reproductive ages experienced a decline in the studied period. For Denmark

the average growth weighted by the number of babies is positive as a result of greater number

of babies in those age groups that experienced some increase. Resultant of this is the positive

covariance of 0.023 in Denmark. The opposite occurs in China with lower alternative average,

r̃(t), than for the whole population of women, r̄(t). This difference of growth rates adjusts the

level of the GFR. The observed covariances between age-specific birth rates and growth rates

is mainly a consequence of the distinct average growth rates [r̃ − r̄].
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Decomposition (14) of the compositional effect of change explicates that is through adjust-

ing the average v̄(t) with a difference of average growth that the structure of the population

influences the total change in v̄(t).

Difference in averages: Change in the average age of the population

The covariance function Cov(u, v) in (2) is a commutative function, that is both variables u and

v are similarly and can exchange places for Cov(v, u). Equation (14) can also be reexpressed in

terms of the average of the intensity of the weighting function, ¯́w(y), and the difference of the

averages of the variable of interest weighted by different terms, [ṽ(y)− v̄(y)]. The covariance

is decomposed as

Cov(v, ẃ) = ¯́w [ṽ − v̄] . (16)

Preston, Himes and Eggers (1989) showed that the change over time of the average age of the

population, ā(t), can be expressed as ˙̄a = Cov(a, r). Alternatively we could write using (16)

˙̄a = r̄ [ã− ā] , (17)

where r̄(t) is the growth rate of the population, ā(t) is the average age of the population, and

ã(t) corresponds to the average age of the population that experienced the change, Ṅ(a, t) =

r(a, t)N(a, t).

Table 2 illustrates equation (16), by determining the decomposition of the change in the

average age of the population, using the same countries and period as Preston, Himes and
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Eggers.

Table 2: Average age of the population, ā(t), and the decomposition of the annual change over
time from 1970 to 1980 for Japan, the Netherlands and the United States.

Japan Netherlands United States
ā(1970) 31.586 32.634 32.378
ā(1980) 33.969 34.632 34.035
˙̄a(1975) 0.238 0.200 0.166
Cov(a, r) 0.239 0.200 0.166

r̄ 0.012 0.009 0.011
ã 51.986 57.296 48.527
ā 32.765 33.677 33.240
r̄ [ã− ā] 0.239 0.200 0.166

˙̄a = r̄ [ã− ā] 0.239 0.200 0.166

Source: Authors’ calculations described in the Note, based on U.S. Census Bureau (2001). The data for the

Netherlands corresponds for the years 1971 to 1981.

Japan leads in population growth with a r̄(t) of 1.2%, followed by the United States with

1.1% and the Netherlands 0.9%. In the Netherlands the elderly experienced the greatest

changes and as a consequence the alternative average age ã(t) is of 57.3 years. The contrary

is seen in the U.S. where the increase in younger groups contributes to lower the gap between

the average ages ã(t) and ā(t).

The new decomposition of the compositional effect of change confirms the suspicion of

the highest growth rates among the aged population. Furthermore, the change can also be

explained as an adjustment of the average growth rate by the difference between the average

of the population experiencing change and the total population.
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Product of differences: Change in the world’s life expectancy

Another alternative covariance decomposition proposed here below includes three terms. The

first component is the average of the positive deviations of v(x, y) from its mean, [v − v̄]+. The

second term corresponds to the difference of population growth for the age-groups with positive

and negative deviations of v(x, y) from its mean, this term is expressed as
#
˜́w+ − ˜́w−

$
. Finally

is the proportion of age-groups with positive deviations of v(x, y) from its mean, denoted π+.

Following the definition in equation (2) the covariance can also be expressed as

Cov(v, ẃ) =

!∞
0
ẃ(x, y) [v(x, y)− v̄(y)]w(x, y)dx!∞

0
w(x, y)dx

. (18)

Two indicator functions are used to separate positive from negative values of the difference

between the function of interest and its average, v(x, y)− v̄(y). These indicator functions are

denoted I+(v− v̄) and I−(v− v̄) for the positive and negative cases respectively. The function

I+(v − v̄) has values of one when the values of v(x, y) − v̄(y) are positive and zero otherwise

and analogous for the negative values of I−(v − v̄). From (18) we have

Cov(v, ẃ) =

!∞
0 ẃ(x, y) [v(x, y)− v̄(y)] [I+ [v − v̄] + I− [v − v̄]]w(x, y)dx!∞

0 w(x, y)dx
. (19)

Defining the positive average of the deviations of v(x, y) from its mean as

[v − v̄]+ =
!∞
0 [v(x, y)− v̄(y)] I+ [v − v̄]w(x, y)dx!∞

0
I+ [v − v̄]w(x, y)dx ,
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and the proportion of these positive averages as

π+ =

!∞
0 I+ [v − v̄]w(x, y)dx!∞

0
w(x, y)dx

,

we can rewrite the covariance from (19) as

Cov(v, ẃ) =

!∞
0 ẃ(x, y) [v(x, y)− v̄(y)] [I+ [v − v̄] + I− [v − v̄]]w(x, y)dx!∞

0
[v(x, y)− v̄(y)] I+ [v − v̄]w(x, y)dx [v − v̄]+ π+. (20)

Let the alternative average of the weighting function be expressed as

˜́w+ =

!∞
0
ẃ(x, y) [v(x, y)− v̄(y)] I+ [v − v̄]w(x, y)dx!∞
0 [v(x, y)− v̄(y)] I+ [v − v̄]w(x, y)dx ,

analogous for the negative terms ˜́w−(t). Then the first term in (20) can be further separated

into

!∞
0
ẃ(x, y) [v(x, y)− v̄(y)] [I+ [v − v̄] + I− [v − v̄]]w(x, y)dx!∞

0
[v(x, y)− v̄(y)] I+ [v − v̄]w(x, y)dx = ˜́w+ − ˜́w−, (21)

this is done by adding and subtracting the terms ˜́w− − ˜́w−. As a result of (20) and (21) the

covariance is decomposed as

Cov(v, ẃ) =
#
˜́w+ − ˜́w−

$
[v − v̄]+ π+. (22)
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Age heterogeneity is only one of the multitudinous dimensions of population heterogeneity -

some observed and some unobserved. In this section we present an example of averages over

another characteristic, namely nationality.

Consider a population composed of different subpopulations. The life expectancy at birth

at time t for the entire population, ēo(t), is the average over the subpopulations’ life expectancy

at birth

ēo(t) =

"
i e
o
i (t)Ni(t)"
iNi(t)

, (23)

where Ni(t) is the size of subpopulation i and eoi (t) is the subpopulation life expectancy at

birth. The change in ēo over time can be decomposed utilizing (3) and (22) as

˙̄e
o
= ¯̇e

o
+ [r̃+ − r̃−] [eo − ēo]+ π+, (24)

where ri(t) is the population growth rate of the ith subpopulation, ri(t) ≡ Ńi(t).

In Table 3 formula (24) is applied to changes in life expectancy of the world population.

The world experienced an increase in life expectancy with an annual change of more than three

months per year ( ˙̄eo(1985) = 0.26). The covariance between life expectancy and population

growth rates among the subpopulations is modest. Because the covariance is negative, the

countries with long life expectancy tend to have slow rates of population growth. On average 6.3

years are observed from the population experiencing higher longevity than average. Opposed

to this are the 8 years from those countries below average [eo − ēo]−. Both groups, above

and below average ēo have proportions around 50 %, as seen in the π+. The compositional
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Table 3: Life expectancy at birth, ēo(t), for the world and decomposition of the annual change
over time in life expectancy from 1980 to 1990.

World
ēo(1980) 62.790
ēo(1990) 65.401
˙̄e
o
(1985) 0.261

¯̇e
o 0.314
Cov(eo, r) -0.053

[r̃+ − r̃−] -0.015
[eo − ēo]+ 6.301
π+ 0.560
[r̃+ − r̃−] [eo − ēo]+ π+ -0.053

˙̄e
o
= ¯̇e

o
+ [r̃+ − r̃−] [eo − ēo]+ π+ 0.261

Source: Authors’ calculations described in the Note, based on World Bank data (2001). The subpopulations

are the populations of the countries of the world for which data were available.

component is negative due to the difference [r̃+ − r̃−] = −0.015, resultant of growth rates in

the countries below average life expectancy. The increase in life expectancy of the world is

thus lower than the average increase in national life expectancy.

Decomposition (22) of the compositional effect of change goes further into detail of the

observed change. As shown in the application above any of the three main terms can explain

the level and the direction of the change. Therefore, it is crucial to go on this level of detail

of the decomposition to clearly disentangle the reasons of this dynamic in the demographic

variables.
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Product of differences: Change in life expectancy

Utilizing the commutative property of the covariance, as in equation (16), we can exchange

the places of v and ẃ in equation (22). The alternative compositional effect is written as

Cov(v, ẃ) = [ṽ+ − ṽ−]
*
ẃ− ¯́w+

+
π+. (25)

As an application of these equation we can replace the compositional effect of change in life

expectancy in (13) for

ėo(0, t) = ρ̄(t)e†(t) +
*
ρ̃+ − ρ̃−

+ *
eo − e†(t)+

+
π+. (26)

Table 4 shows the application of equation (26) to the annual change in life expectancy at birth

for the Swedish population in 1903, 1953 and 1998.

The remaining life expectancy reduces with age and the positive values of
*
eo − e†(t)+

+

are found in the younger age-groups. This average number of remaining life expectancy above

average declines over time. The improvement in mortality in the older age-groups together with

the increment in remaining life expectancy below average,
*
eo − e†(t)+−, act in the difference*

ρ̃+ − ρ̃−
+
. The increase observed in the fifties in the

*
ρ̃+ − ρ̃−

+
slows down in the last decade

of the twentieth century. The compositional component passes from representing less than

10% of the total change in life expectancy to above 15% along with the twenty century.

We conclude with this application because it is a clear example of an increasing importance

of the compositional effect overtime. The alternative decomposition (25) is a clear explanation

to the obscure covariance used in (13).
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Table 4: Life Expectancy at birth, eo(0, t), and the decomposition of the annual change around
the first of January of 1903, 1953 and 1998, in Sweden.

t 1903 1953 1998
eo(0, t− 2.5) 52.239 71.130 78.784
eo(0, t+ 2.5) 54.527 72.586 79.740
ėo(0, t) 0.458 0.291 0.191

ρ̄ (%) 1.852 2.083 1.587
e† 22.362 11.988 10.053
ρ̄e† 0.414 0.249 0.159
Covf(ρ, e

o) 0.044 0.042 0.032*
ρ̃+ − ρ̃−

+
0.005 0.010 0.010*

eo − e†(t)+
+

23.048 14.870 10.175
π+ (%) 36.900 27.800 30.800*
ρ̃+ − ρ̃−

+ *
eo − e†(t)+

+
π+ 0.044 0.042 0.032

ėo(0) = ρ̄e† +
*
ρ̃+ − ρ̃−

+ *
eo − e†(t)+

+
π+ 0.458 0.291 0.191

Source: Authors’ calculations described in the Note. Life table data is derived from the Human Mortality

Database (2002). Life table values for the years 1900 and 1905, 1950 and 1955, 1995 and 2000, were used to

obtain results for the mid-points around January 1, 1903, 1953 and 1998.

Discussion

In many situations in population studies the interest centers in the relationship or association

between demographic variables. One measure of linear dependency is the covariance.

The covariance function is found in many studies in demography. To cite a few studies are

Mauskopf and Wallace (1984) analyzing the covariance between children born and child deaths

across women and the study of Casterline et al. (1986) looking at the covariance between the

ages of wife and husband in several countries. Also among these group of research are David

and Sanderson (1987) taking into account the covariance between couple’s fecundability and

their overall health status and David et al. (1988) looking at the covariance between age at

marriage and extent of fertility control.

Here we focused in another group of studies that have also employed the covariance between
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demographic variables. We refer to those studies of the change over time of demographic

variables. Among the research on the dynamics of population are the work by Preston, Himes

and Eggers (1989) expressing the change over time in the average age of the population as the

covariance between ages and age-specific growth rates. Extensions of the result by Preston,

Himes and Eggers also led to the study of change over time of other variables by Schoen and

Kim (1992) and a general decomposition method presented by Vaupel and Canudas Romo

(2002). Both studies include covariances to express the change in demographic variables due

to change in the structure of the population. Furthermore, the decomposition of the change

over time in life expectancy presented by Vaupel and Canudas Romo (2003) also includes a

covariance between the improvement of mortality and the remaining life expectancy. Finally

is the work by Schoen and Kim (1991) where the change over time of the distance to stability

is expressed also as a covariance.

Whether it is a covariance or not, this is the change due to compositional effect of change.

Here, we presented several alternative expressions for explicating the covariance term of the

compositional effect of change. The alternative decompositions are presented in equations (14),

(16), (22) and (25).

Decompositions (14) and (16) add four terms to the change: the demographic average

v̄(t) and the population growth rate r̄(t) at the mid points, and the two alternative averages

for the variable of interest ṽ(t) and the population growth r̃(t). The first two have straight

forward interpretation and they are used as reference levels that are altered by the product of

a difference of two terms. In these differences is where the alternative averages are included.

Both ṽ(t) and r̃(t) can be interpreted as the demographic average and growth in the period of

change.
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Decompositions (22) and (25) include five new terms, grouped into three components.

These are two alternative averages ṽ(t) and r̃(t), with positive and negative cases. Two averages

of deviations from their means, [v(a, t)− v̄(t)]+ and [r(a, t)− r̄(t)]+, and finally the proportion

of positive cases π+(t). The commutative property of the covariance permits the election of

the functions v(x, y) and ẃ(x, y) in the alternative decompositions of Cov(v, ẃ). Therefore it

is possible to utilize either equation (22) or (25) to explicate the compositional effect. Since

the weighting function w(x, y) is in many cases the population size N (a, t) then the intensity

ẃ(x, y) is equal to the population growth r(a, t) = Ń(a, t). Equation (22) is preferred over (25)

because the age-specific growth rates fluctuate along the ages, as shown by Canudas Romo

(2003), as a result the difference [r(a, t)− r̄(t)] those not have an age pattern. Similar situation

is seen for the age-specific improvement in mortality [ρ(a, t)− ρ̄(t)] and then the decomposition

shown in (26) is preferred.

Another definition of the covariance that includes variances is

Cov(u, v) =
1

2
[var(u) + var(v)− var(u− v)] . (27)

Equation (27) represents one half of the extent in which the variance of the difference exceeds

the addition of the variances. Equation (27) could also lead to further research on explicating

the use of covariance in demography.
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Note

If data are available for time t and t+h, then we generally used the following approximations

for the value at the mid-point t+ h/2. For the relative derivative of the function v(a, t+ h/2),

we used

v́(a, t+ h/2) ≈
ln
#
v(a,t+h)
v(a,t)

$
h

. (28)

The value of the function at the mid-point v (a, t+ h/2) was estimated by

v(a, t+ h/2) ≈ v(a, t)e(h/2)v́(a,t+h/2). (29)

Substituting the right-hand side of (28) for v́(a, t+ h/2) in (29) yields the equivalent approxi-

mation

v(a, t+ h/2) ≈ [v(a, t)v(a, t+ h)]1/2 . (30)

This is a standard approximation in demography (Preston, Heuveline and Guillot, 2001). The

derivative of the function v(a, t+ h/2) was estimated by

v̇(a, t+ h/2) = v́(a, t+ h/2)v(a, t+ h/2). (31)

We used (28), (29) and (31) wherever we thought that the rate of change was more or less

constant over the time interval. In some cases it seemed appropriate to assume that change

in the interval was linear. This was the case when we estimated the change over time in the
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survival function $(a, t) and in life expectancy eo(a, t) in Table 4. Then we used

v(a, t+ h/2) ≈ v(a, t+ h) + v(a, t)

2
(32)

and

v̇(a, t+ h/2) ≈ v(a, t+ h)− v(a, t)
h

. (33)

The period force of mortality in an interval was calculated using an equation similar to

(28). If data are available for ages a and a+ k we used the following approximation

µ(a + k/2, t) ≈ −
ln
#
#(a+k,t)
#(a,t)

$
k

. (34)

The rate of progress in reducing death rates ρ(a + k/2, t+ h/2) was calculated as

ρ(a + k/2, t+ h/2) = −µ́(a + k/2, t+ h/2) ≈ −
ln
#
µ(a+k/2,t+h)
µ(a+k/2,t)

$
h

. (35)

Because the force of mortality in (34) and ρ(a+ k/2, t+ h/2) in (35) are at ages a + k/2,

it was necessary to calculate the other functions involved in the decomposition at those ages.

The survivorship function $(a, t) and the remaining life expectancy eo(a, t) at age a+k/2 were

calculated using an equation analogous to equation (30). The lifetable distribution of deaths
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was calculated as

f(a+ k/2, t) ≈ µ(a+ k/2, t)$(a+ k/2, t). (36)

For the estimation of some equations we substituted sums for integrals.
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