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Street Weighted Interpolation Techniques for Demographic 

Count Estimation in Incompatible Zone Systems  

 

Abstract – Data processing for the spatial analysis of small area social, demographic and 

economic data often requires combinations of data spatially aggregated to two or more 

incompatible zone systems in a region, such as a set of enumeration districts that changes over 

time.  Such situations can be addressed by areal interpolation, the transfer of data between 

zonal systems according to spatial algorithms.  The authors test a technique of areal 

interpolation using Geographic Information Systems (GIS) that employs a digital map layer 

representing streets and roads to derive varying density weights for small areas within 

aggregation zones.  The technique reduces errors in estimation as compared to estimates 

derived using the commonly applied area weighting technique, with its assumption of uniform 

density.  The street weighting technique is much easier to use than other interpolation 

techniques that have also been shown to reduce error as compared to area based weighting.  

Keywords:  areal interpolation, dasymetric mapping, small area demography, census 

geography 

 

Introduction 

Frequent changes in the geography of enumeration districts at the local scale 

are a constant frustration to analysts wishing to measure dynamic socio-

demographic and economic trends.  The goal of this paper is to evaluate and 

test the errors associated with several techniques of interpolation using 

geographic information systems (GIS).  The street weighted technique can be 

used to derive relatively accurate estimates of social, demographic and 

economic trends for an exhaustive and complete set of local areas across a 
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region, despite changes in the boundaries of the local areas during the trend 

interval.  The technique can be applied as well to cross-sectional problems in 

which data from two incompatible superimposed sets of areal units must be 

combined – a common problem for many spatial analysts but particularly in 

market research. 

In many nations, local enumeration districts are designed for a target 

population size, and thus vary in area inversely with population density.  For 

example, U.S. Census tracts are typically drawn to include approximately 

4,000 individuals, and can range in size from less than 1 km
2
 in very dense 

urban zones to areas the size of Belgium in rural districts.  Development of 

previously rural areas, or population decline in older urban areas necessitates 

the re-drawing of such enumeration district boundaries to maintain a 

reasonable range of populations across the set of areal units.  Splits, merges 

and complex territorial re-combinations are the result.   

The typical solution to the problem in which spatial data are aggregated 

to incompatible, superimposed geographies must be combined is areal 

interpolation, the process by which data associated with one set of zones (the 

source layer) are assigned to the other set of zones (the target layer) according 

to defined algorithms.  In cases where trend estimates must be computed 

during an interval in which enumeration district zones are changing, known 

counts at one boundary of the time interval are assigned to the areal units in 

effect at the other boundary of the time interval.  To standardize to the more 
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recent set of zones, areal unit counts at time t0 must be allocated, with 

minimum error, to the (different) zones in use for the same region at time t1.   

 

Areal Interpolation and Dasymetric Mapping 

The simplest approach to areal interpolation is to begin by creating a 

joining (intersecting) the two zone boundary layers, thus generating a set of 

zone fragments each of which has a unique pair of source and target zones 

(Flowerdew and Green [1992] call these fragments intersection zones).  

Fragment count estimates from the source time period can be generated by area 

weighting, i.e., by multiplying the source zone count by the ratio of the 

fragment’s area to the source zone area.  The population estimate for a given 

target zone is the sum of these weighted counts across the set of source zone 

fragments that exhaust the territory of the target zone (Fisher and Langford, 

1995
1
): 
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Where tP̂  is the estimate target zone count, Ats is the area of the fragment 

belonging to a given pair of target and source zones t and s, Ps is the source 

zone count, and As is the source zone area.   The estimated fragment counts for 

the source layer variable are then simply summed across all fragments 

belonging to each target zone to derive a set of source layer count estimates for 

each target zone.  In the case of changing enumeration districts over time, once 

                                                 
1
Note that in order to preserve the pycnophylactic property, the set of source zones must 

precisely overlie the entire territory of the target region.  Such is the case in our example of 

Los Angeles County. 
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corresponding sets of counts (or estimates) originating in both the source (time 

t0) and target (time t1) layers are available for a single set of areal units (the 

target layer), the trend can be computed by subtraction.   

This form of area weighting meets the minimum criterion for areal 

interpolation, the pycnophylactic property, according to which source 

population is neither reduced nor increased by the process of weighting and 

assignment to a new set of zones (Tobler, 1979).  In other words, for an areal 

interpolation technique to be pycnophylactic, the (observed) size of the source 

population summed across all original source units in the region must be the 

same as the sum of the source population estimates for the set of all target 

zones to which the source unit populations are assigned.   The problem with 

the basic area weighting approach is that it assumes uniform count densities 

within the source zone areas.  Needless to say, this assumption is almost never 

accurate, and can be wildly inaccurate in areas (such as most cities in 

California) where steep hills and mountains create barriers to urban expansion.  

The result is inaccuracy and likely systematic bias in count estimates. 

Over the years, geographers have developed more sophisticated 

techniques to reduce error and systematic bias in estimates derived by areal 

interpolation.  The techniques fall into two main categories:  smoothing 

techniques, and dasymetric, or ancillary weighting techniques.  Tobler (1979) 

theorized the smoothing technique for areal interpolation.  In the smoothing 

approach, the source areas are broken into a lattice.  The lattice cells are then 

assigned a portion of their source zone counts, weighted along a smooth 
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density gradient computed by interpolating between the density of the pixel’s 

source zone and those of its nearest neighbor zones.  The weights are 

constrained so as to preserve the pycnophylactic property.  To the extent that 

aggregate density differences between adjacent areal units accurately reflect 

smooth underlying surface counts, the smoothing technique gives reliable 

estimates of within-zone density variations.  Error is introduced when unit 

boundaries reflect relatively sharp changes in the true density surface, or more 

generally, when true density gradients do not follow smooth and monotonic 

paths from the centroid of a given unit to the centroids of its adjacent 

neighbors.  

Dasymetric mapping appears to be the general approach of choice in 

areal interpolation.  Mennis (2003) defines dasymetric mapping as areal 

interpolation that uses ancillary spatial data to aid in the interpolation process.  

Typically in dasymetric mapping, source layer zones in the region are first 

transformed into a surface lattice in much the same way as in the smoothing 

techniques.  But rather than using purely mathematical algorithms to 

interpolate lattice cell values from known data associated with the original 

source zones, an ancillary data layer is added to the lattice and a weighting 

scheme is applied to cell counts according to known or derived density levels 

associated with values in the ancillary data.  It is a relatively simple matter to 

constrain the weighted cell count estimates in such a way as to preserve the 

pycnophylactic property. 
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To date, dasymetric techniques have generally used remote sensing 

data to derive density weights from inferred urban land cover (Eicher and 

Brewer, 2001; Cockings, et al., 1997; Langford, et al., 1991).  In this approach, 

the lattice resolution and rectification are selected to coincide with those of the 

satellite imagery used to generate the land cover weights.  In a direct 

comparison, Cockings et al. report their land-cover weighted estimates were 

more accurate than area weighted estimates for 84 percent of the target zones 

in their study area.   

The obstacle to more widespread use of remote sensing data for areal 

interpolation is the need to process data in a raster geographic information 

system (GIS) environment, when the data source zones are, by definition, 

polygons, the digital map layers of which are made available in vector GIS 

format by government statistical agencies.  Indeed, this is an obstacle to the 

widespread use of any technique, such as smoothing, that requires a lattice 

surface for weighting and computation.  Vector GIS skills and installed 

software are more common than raster GIS, particularly among demographers, 

planners, local government technicians and market analysts who use spatially 

referenced social and economic data.  In applied settings, area weighting is 

ubiquitous when areal interpolation is necessary; dasymetric weighting using 

remote sensing has been almost completely restricted to computational 

experiments by geographers and allied spatial scientists.  To promote the use of 

improved interpolated estimates in applied settings, an areal interpolation 
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technique must be developed that reduces count estimate error using only 

ancillary data readily available in vector format. 

 

The Street Weighting Technique 

The authors statistically tested just such a dasymetric areal interpolation 

technique that relies on readily available vector GIS data for ancillary local 

weighting, and that therefore does not require the raster GIS skills and 

capabilities needed to overlay remotely sensed data on enumeration 

geographies. The ancillary data we use are the digitally coded streets and 

roads, which in the U.S. are distributed by the Census Bureau and other 

sources as a vector GIS layer (the Topologically Integrated Geographic 

Encoding and Referencing, or TIGER files [U.S. Census Bureau, 1993]).   

While others have used this street weighting technique, the authors believe 

there has been no previous statistical test of its accuracy.  

The street weighting technique has been used in at least one applied 

demographic series (Ong and Houston, 2003; Ong, 1996) and very likely 

others.  In the methods research literature, Xie (1996) describes the street 

weighting technique, calling it the overlaid network algorithm.  Xie elaborated 

three approaches, including a network length method that is identical to the 

technique used in this study.  Xie did not, however, compute the errors in 

estimation for his techniques.  Rather, he simply examines the distributions and 

variances of his estimates and compares them to corresponding descriptive 

statistics for the observed block group counts within his study region.  This 
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approach sheds little light on the accuracy of an interpolation method, because 

the first order distributions of each set of estimates’ relative deviation from 

their respective means are not at issue.  It is rather the distribution of a set of 

estimates’ deviations from each estimate’s corresponding observed value (i.e. 

error) that indicates the overall accuracy of an estimation technique. 

This fact seems lost on Xie.  He claims his finding that the variance for 

one of his count estimates was smaller than that for the observed block group 

count distribution is evidence that “The statistics derived from [his] method are 

even better than those from the original census data.  These findings suggest 

that there is room for improvements in existing census population estimation 

and data processing techniques” (pp. 302-3, emphasis added).  The implication 

that any areal interpolation technique can actually improve upon an observed 

count cannot be supported.  Nor can the more general logic from which such 

an assertion flows, namely that a smaller count variance, whether observed or 

estimated, is necessarily proof of smaller errors in estimation or measurement.  

Indeed, in the absence of a priori reasons to doubt the reliability of observed 

counts, totally error free estimates would logically have variances identical to 

the observed count variance.  Variances for the distributions of estimates that 

are either smaller or larger than observed count variances are in fact evidence 

of error. 
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Methods and Data 

To statistically test the street weighting method, this study uses Los 

Angeles County as a case study area; interpolating the 1990 census tract counts 

of persons and housing units to the year 2000 census tract geography.  The 

resulting count estimates are then analyzed for errors using as a benchmark the 

1990 counts associated with the 2000 census tract areas, computed by 

aggregating the city block level 1990 counts to their corresponding 2000 

census tracts (see Appendix A for details of our block aggregation 

methodology).  Our ability to aggregate benchmark counts in this way permits 

us to compute errors in estimation for each target zone area (2000 census tract) 

by subtracting the 1990 benchmark counts from our 1990 estimates for each 

target zone in the study area.  We then analyze distributions and statistics for 

the estimation errors directly.  This permits us to establish the magnitude of 

estimation errors associated with each technique (area weighting versus street 

weighting), and to formally test whether the error reduction over area 

weighting we achieve using the street weighting technique is statistically 

significant. 

 

Computing the Street Weighted Count Estimates 

 The first stage of street weighted areal interpolation is to superimpose 

in a vector GIS environment three digital maps:  the source zone boundaries, 

the target zone boundaries, and the street layer (U.S. Census Bureau, 1993).  

The layers must be in a common coordinate system and projection.  The next 
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task is to compute the street weight for each intersection zone fragment.  In 

order to preserve the pycnophylactic property, the street weights for each 

intersection zone are computed as the ratio of the aggregate length of the street 

vectors in the intersection zone to the aggregate length of the street vectors in 

the source zone: 

  
∑
∑
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W       (2) 

 

Where Wst is the weight for a given intersection zone fragment defined by its 

unique pair
2
 of source and target zones s and t, Lst is the length of each street 

vector in that intersection zone, and Ls is the length of each street vector in the 

source zone pertaining to that intersection zone.   

  Once the weights for each intersection zone are calculated, they are 

applied to the original source zone counts attached to each one.  The ratio 

formula of the weighting scheme preserves the pycnophylactic property when 

the weights are applied to the original counts.  The weighted source count 

estimates for each intersection zone are then summed across each target zone.  

The result is street weighted estimates of the source zone counts re-assigned to 

the target geographic areas. 

 

Error Analysis 

                                                 
2
 The intersection zone defined by a unique pair of source and target zones need not be 

contiguous.  In non-contiguous cases, the weighting process accurately assigns count estimates 

to the intersection zone as a set of zones.  The set of non-contiguous intersection zones 

vanishes when it is re-aggregated, without error, into the target zone in a later step. 
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 For this study, the authors computed both the area weighted estimates 

and the street weighted estimates for the Los Angeles County study area, as 

well as the 1990 total population and housing unit counts for the 2000 census 

tract areas (aggregated from 1990 block data as explained in Appendix A).  

Using the latter data as a benchmark, the authors computed errors in estimation 

for both the area weighted and street weighted estimates.  Table 1 summarizes 

the distributions of errors for both of the two variables, each estimated 

according to the two weighting algorithms: 

 

    [Table 1 approximately here] 

 

Table 1 clearly shows a stark contrast between the errors generated 

using area weighting and street weighting:  The error distributions for both sets 

of street weighted estimates are remarkably symmetrical and approximately 

normal:  Their medians are small in magnitude, and the category breaks are 

very similar in magnitude to their corresponding reflections across the median.  

For example, in the person count distribution the 30
th
 and 70

th
 percentiles are –

242 and 247, respectively; the 10
th
 and 90

th
 percentiles for the housing unit 

counts are –288 and 285, respectively, and so forth.   

 The distributions of errors for the area-weighted estimates lack these 

desirable properties:  Their medians are of greater (negative) magnitude, 

particularly the housing count estimates, indicating the distributions are right 

skewed.  Most importantly, numerous large outliers plague the area-weighted 
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distributions.   Indeed, the area-weighted errors for the count of persons have a 

larger standard deviation despite consistently lower errors over the middle 

sixty percentiles of their range. 

Figures 1 and 2 show histograms of the errors in street weighted 

estimation for the two test variables, total population and housing unit counts 

(respectively), with the frequencies of errors within the given ranges indicated 

on the vertical scale: 

 

    [Figures 1 and 2 approximately here] 

 

The approximation of normality in the error distributions is again apparent 

from an inspection of Figures 1 and 2:  The distributions cluster narrowly and 

symmetrically around their modes, which are in the respective categories 

centered on zero.  Outliers, while of considerable magnitude, are few in 

number.  The change in the scale of the x-axis shows the considerably greater 

range of errors for population counts than for housing unit counts using the 

street weighting technique.  

 

Standardized Error Measures 

 To establish measures of estimate error that can be used to compare 

errors from several variables, and errors in estimates for a given variable 

derived using multiple interpolation methods, we follow Eicher and Brewer 

(2001) and Fisher and Langford (1995) in using root mean squared (RMS) 
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error.  RMS error is a somewhat more rigorous measure than mean absolute 

error, used by Goodchild et al. (1993), because it is more sensitive to outliers 

in the error distributions.  Table 2 shows descriptive statistics for population 

and housing unit counts and estimates for 1990 Los Angeles County census 

tracts: 

 

    [Table 2 approximately here] 

 

 Table 2 shows large differences in estimation error for both population 

and housing unit counts using the two different weighted areal interpolation 

techniques (area weighting versus street weighting).  Examining the RMS error 

levels for the two variables separately, we see that the area-weighted errors for 

housing unit counts are much larger than the corresponding street weighted 

estimates for this variable, but the RMS errors for the population counts using 

the two techniques, while significantly quite different, are less divergent.   

To directly compare the relative error reduction when the different 

techniques are applied to two (or more) count variables, we refer to the 

respective coefficients of variation for the set of error estimate distributions.  

Comparison of these statistics shows the area-weighted errors for housing unit 

counts are much larger than the area weighted population estimate errors.  This 

volatility in area-weighted estimates indicates extreme sensitivity to the 

ubiquitous internal variations in density which violate the equal density 

assumption upon which area weighting relies – a volatility that, depending 
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upon the underlying surface geography of the construct being interpolated, can 

produce such large variations in area weighted error distributions as between 

the person counts and housing unit counts in our example.  

Errors in the street weighted estimates, by way of contrast, are far more 

consistent for the two variables in our example, their respective coefficients of 

variation differing by only 0.009.  For both variables, the use of the street 

weighting interpolation algorithm reduces error significantly over the area 

weighting technique.  Because the area weighted errors for the housing unit 

counts are so large, the improvement in estimation for housing unit counts 

using street weighting is much greater – by a factor of three – than the        

corresponding improvement for person counts. 

 

Interpretation of Error Maps 

 Figures 3 and 4 map the population estimation error rates for 1990 

population counts interpolated to 2000 census tracts for Los Angeles County 

using, respectively, the area and street weighting techniques.  The four data 

intervals in both maps are determined by two standard deviations in the error 

distribution of estimates generated using the street weighting method: negative 

errors greater than two standard deviations; negative errors zero to two 

standard deviations; and similarly for positive errors.  The use of the same 

absolute intervals permits direct comparison between the two maps.   

 Figure 3 shows the spatial pattern of errors using area based weighting.  

The most dramatic feature is the diagonal swath of high positive errors running 
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from the northwest corner of Los Angeles County through to the eastern 

border.  Readers familiar with southern California will recognize this region as 

corresponding closely to the San Gabriel Mountains and associated highlands 

of the transverse ranges.   

Because both the area and street weighting techniques preserve the 

pycnophylactic property, errors in a given 2000 tract are mirrored by 

corresponding errors of the opposite sign in some set of nearby (typically 

adjacent) tracts that share one or more 1990 source tracts with the 2000 tract in 

question.  Such corresponding 2000 tracts showing high negative errors can be 

seen in some fast-growing foothill communities immediately south of the large 

mountain region.  Similar patterns of high error in which mountainous areas 

are erroneously assigned population at the expense of rapidly growing, 

adjacent foothill areas can be seen in the Santa Monica Mountains in the 

extreme western part of the county and in the Puente Hills (labeled “Hills”) at 

the county’s east – by – southeast edge. 

 The explanation for high errors in mountainous regions generated using 

the area weighting method is straightforward: these are regions in which many 

zones split over the given time interval, reflecting rapid development of the 

foothill areas.  Given the area-weighting algorithm’s assumption of uniform 

population density, it wrongly assigns most of the pre-split population to the 

large, high-elevation fragments, which are sparsely populated, rather than to 

the smaller foothill fragments that are more densely populated even before the 

zone split.  
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 A similar pattern is found in northeast Los Angeles County, where the 

cities of Lancaster and Palmdale are the site of rapid ex-urban development.  

While topography is not an issue in this relatively flat, high-desert region, very 

large source zones are once again split between small target zones representing 

areas of rapid development and larger target zones that correspond to 

remaining sparsely populated areas.  As in the mountainous regions, the 

developing parts of the desert region were already more densely populated 

before the split, leading to error when the area-weighting algorithm is applied.     

 The other types of regions showing clusters of high errors are those 

dominated by industry and transportation.  Development near Los Angeles 

International Airport in the southwest led to a tract split in this area; since the 

airport itself has virtually no permanent residents; it is wrongly assigned a 

large population.  Conversely, the tract (labeled “Harbor”) containing the Port 

of Long Beach in the far south is overbounded.  Development in residential 

parts of the tract bordering the harbor is quite dense.  Meanwhile, the land area 

of the target tract is much smaller than the boundary drawn on the map, which 

extends far into the harbor.  The result is an underestimation of tract population 

using area weighting, and erroneous assignment of harbor side population to 

the adjacent landward tracts. 

 The industrial tracts with large positive errors are strung out in 

corridors along river basins.  The first runs along the Los Angeles River from 

just east of downtown Los Angeles (due west of the “I” in the label 

“Industrial”) down river to the south and east, through the industrial suburbs of 
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Vernon and Commerce, and then turns south/southwest through Southgate, 

Paramount and northwest Long Beach on its way to the harbor.  The other 

corridor, as indicated by the label “Industrial”, is along the upper reaches of 

San Gabriel River to the northeast, beginning in Irwindale and flowing 

southwest through the Whittier Narrows.  All these areas are sparsely 

populated and heavily industrial, leading the area weighting method to 

overestimate their populations. 

 Figure 4 maps population estimate errors generated using the street 

weighting technique.   Comparing the spatial patterns of errors in Figure 4 with 

those in Figure 3, we see a similar pattern in which errors are concentrated in 

desert and upland regions experiencing rapid growth, as well as in regions that 

are devoted to transportation or industrial uses.  Upon closer inspection, 

however, certain differences emerge:  overall, there are fewer areas of error 

exceeding plus or minus two standard deviations.   

The most consistent improvements in estimation are in the upland 

regions of mountains, hills and foothills.  This was expected, as the highest and 

most rugged (hence most sparsely populated) parts of these regions are usually 

aggregated into large zones with few roads.  The large land areas in such zones 

generate high positive errors when the area-weighting algorithm is applied, 

while the relative absence of roads causes the street weighted estimates to be 

smaller and thus more accurate. Less dramatic improvement is also visible 

along the industrial corridors and in transportation related areas showing high 

positive errors; presumably because the density of roads in such areas is lower 
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than in residential areas, leading to correspondingly lower population 

estimates.   

On the other hand, the street weighting method brings no apparent 

improvement to estimation in the ex-urban desert sprawl region in northeastern 

Los Angeles County.  Indeed, Figures 3 and 4 show that the pattern of errors 

for this region, as indicated by the intervals chosen, is identical when the two 

estimation techniques are used.  The explanation for this pattern appears to be 

the high density of roads in this region, the great majority of them unpaved, 

that are included in the Census street layer data.     

 

Discussion and Conclusions 

This study provides the first error tests of street weighting, a promising 

technique for dasymetric interpolation using a vector data layer for ancillary 

weighting.  The authors provide evidence that the street weighting technique 

produces significantly lower errors in estimation than the area weighting 

technique overall, and also produces more consistent errors when applied to 

different variable counts in a given study area.  These results were expected, 

given that the street weighting technique (like all dasymetric techniques) 

incorporates some information on the internal density variations within source 

area zones – information that is completely lacking in estimates computed 

using the area weighting technique. 

A visual comparison of the spatial distribution of population estimate 

errors generated using the area weighting and street weighting techniques 
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confirms that comparative error reduction is inversely proportional to the 

density of non-residential roads.  In other words, the street weighting method 

appears to reduce errors most compared to the area weighting method in those 

areas where the lack of population is reflected in the lack of roads, and less in 

those areas (such as industrial areas) with a more developed non-residential 

transportation infrastructure.  

The use of the street and road grid (aggregate segment length) as a 

proxy for approximate population density surfaces, as used in this study, is 

thus far from perfect:  it requires the assumption that the residential population 

density gradient at a given distance from the nearest street or road is constant.  

Moreover, this assumption is made without bringing to bear any attribute 

information about the streets and roads, such as traffic capacity or access, nor 

any information about the densities of structures within a given distance from 

streets; the proportion of those structures that are residences; or the population 

density per residence.  Finally, this and any other case study of interpolation 

errors in a single study area can only provide evidence for that area, which, as 

Fisher and Langford (1995) point out, may be anomalous.   

Nevertheless, the reduction in error over area weighting demonstrated 

using the street and road grid for dasymetric weighting suggests that the raw 

density of streets and roads (measured by aggregate length) correlates to some 

degree with the local densities of socio-demographic counts within 

enumeration districts.  The finding of similar error levels when the technique is 

applied to two different counts is a preliminary indication that the relative 
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accuracy of estimation using the street weighting technique is consistent when 

the technique is applied to different socio-demographic variables. 

It quite possible, and perhaps likely, that in a direct comparison 

dasymetric areal interpolation using remotely sensed urban land cover data, or 

vector land cover information, would produce more accurate estimates of 

socio-demographic counts than the street weighting technique discussed in this 

study.  Further research will directly compare street weighted to land cover-

weighted estimates of socio-demographic count variables using a common 

study area to determine their respective error levels. The authors maintain, 

however, that the street weighted areal interpolation technique used here is 

valuable even should future research establish it yields moderately larger errors 

than dasymetric areal interpolation using remotely sensed urban land cover 

data.  The rationale for this assertion is the technique’s evident improvement 

over area-weighted estimates, combined with its considerably greater ease of 

use when compared to classified urban land cover weighting techniques, 

whether raster or vector.  Unlike the latter, the street weighting technique 

employs easily accessible data and is feasible for anyone equipped to compute 

area weighted estimates, namely the vast majority of applied socio-

demographic analysts whose knowledge and access are restricted to vector 

GIS. 

 

Appendix A:  Computation of benchmark counts for 1990 population of 

2000 census tracts 
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An imperfect match in the superimposition of the two layers 

complicated the aggregation of 1990 blocks into 2000 tracts.  There were many 

small discrepancies in the position of boundaries in the two layers, generally 

due to increased accuracy of the 2000 Census boundary layer data.  In the 

course of the computation this led to many apparent gaps between boundaries, 

creating slivers of territory, whereas in reality the true boundaries were 

identical.  The result was 47,814 fragments created by the layering.  Upon 

inspection, however, 49% of these fragments constituted less than 5% of their 

source 1990 block area, and 36% constituted greater than 95% of their source 

1990 block area.  The concentration of frequencies at the extremes of fragment 

area proportion values confirms that the great majority of apparent splits are in 

fact artifacts of boundary line discrepancies in the layering and geo-processing. 

Our solution to this problem was point-in-polygon aggregation.  1990 

blocks were aggregated into 2000 tract territories as determined by the location 

of their tract centroids.  The use of point-in-polygon processing in this case is 

different from typical point-in-polygon interpolation: since the great majority 

of divided source polygons are artifacts of spatial data mismatch, and since this 

technique accurately removes such errors, the processing step is better 

understood as primarily data cleaning rather than data estimation.  In the few 

cases where 1990 blocks were in fact split by 2000 tract boundaries, point-in-

polygon interpolation is expected to be highly accurate because of the very 

large size of the target zones relative to the source zones, because of the 

typically regular shape of block areas, and because of the availability of spatial 
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centroid reference points.  For a discussion of the importance of these factors 

see Sadahiro (2000). 

Point-in-polygon aggregation in this context is therefore expected to 

yield benchmark values that, with few exceptions, are identical to the observed 

1990 counts, inasmuch as the technique corrects mismatches resulting from 

false fragments that are artifacts of boundary layering.  It is therefore the best 

solution to an intractable spatial data processing problem, particularly because 

all alternative techniques require some type of interpolation of block data that 

would propagate the errors inherent in the false block splits that result from 

layering. 
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Table 1:  Error Distributions, Street Weighted and Area Weighted Estimates 

 

 

 Housing Units Total Population 

Percentiles 
Street 

Weighted 

Area 

Weighted 

Street 

Weighted 

Area 

Weighted 

Minimum -2634 -4606 -8088 -10,027 

1
st
 -923 -2535 -2,669 -3406 

5
th
 -471 -1593 -1,271 -1444 

10
th
 -288 -1231 -844 -851 

20
th
 -152 -801 -443 -346 

30
th
 -91 -496 -242 -184 

40
th
 -39 -305 -109 -91 

Median 0 -103 -13.5 -16 

60
th
 41 106 105 52 

70
th
 87 409 247 126 

80
th
 156 759 428 302 

90
th
 285 1299 811 748 

95
th
 445 1823 1,320 1397 

99th 898 2850 2,721 4315 

Maximum 2160 6225 7668 10,022 

Standard 

Deviation 
305.2 1063.2 893.0 1117.6 
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Figure 1:  Estimation Errors, Street Weighted Person Counts for  

1990 Los Angeles County Census Tracts Interpolated to 2000 Tract 

Geography 
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Figure 2:  Estimation Errors, Street Weighted Housing Unit Counts for  

1990 Los Angeles County Census Tracts Interpolated to 2000 Tract 

Geography 
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Table 2:  Root Mean Square Error Analysis, 1990 Los Angeles County Tract 

Count Estimates Interpolated to 2000 Tract Geography 

 

 

Housing Units Total Population 

 

Street 

Weighted 

Area 

Weighted 

Street 

Weighted 

Area 

Weighted 

RMS Errors 305.15 1062.99 892.76 1117.42 

T-test, Difference 

of Means for RMS  
31.02 (< 0.001*) 7.11 (< 0.001*) 

Mean, Benchmark 

from Block Counts 
1,541.88 4,321.47 

Coefficient of 

Variation (RMS) 
0.198 0.689 0.207 0.259 

Error Reduction 

(Improvement over 

Area Weighting) 

71.26% 20.08% 

 

* Probability that observed difference is due to chance. 
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Figure 3:  Map of Area Weighted Estimation Errors  
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Figure 4:  Map of Street Weighted Estimation Errors 

 


